نوع مقاله : پژوهشی-مطالعه موردی

نویسندگان

1 دانشجوی دکتری هواشناسی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

2 دانشیار، گروه پیش آگاهی مخاطرات جوی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

3 استادیار، گروه مهندسی آب، دانشگاه شهرکرد، شهرکرد، ایران

4 استادیار، گروه کاوش های جوی، پژوهشگاه هواشناسی و علوم جو، تهران، ایران

5 استاد فیزیک فضا، مؤسسه ژئوفیزیک دانشگاه تهران، تهران، ایران

چکیده

در دورۀ آماری 2018-۱۹۸۷ بارش بی‌سابقه ­ای در اکتبر ۲۰۱۵ در بازۀ زمانی 72 ساعته به مقدار ۳۲۰ میلی­متر در ایلام ثبت شد. این بارش سنگین از دیدگاه دورپیوندی، شار فعالیت موج راسبی و همچنین از نظر همدیدی-دینامیکی مورد بررسی قرار گرفته است. برای بررسی کمیت­ های هواشناختی از داده‌های بازتحلیل ERA5 با تفکیک افقی 25/. درجه استفاده شده است. برای تعیین پیش­بینی­ پذیری بارش فوق، مدل WRF برای سه حوزه تودرتو با تفکیک‌ افقی به‌ترتیب 36، 12 و 4 کیلومتر اجرا و سپس مقادیر بارش شبیه‌سازی با دیدبانی مقایسه شدند. نتایج نشان می­دهن که براساس شار فعالیت موج راسبی، فعالیت این سامانه از عرض ­های میانی تأمین شده است. همچنین ترکیب دو سامانۀ کم‌فشار قوی سودان و مدیترانه، تأثیر توفان حاره­ای چاپالا به عنوان عامل تزریق رطوبت مضاعف به منطقه، بندال ایجاد‌شده در سطوح میانی جو، پشتۀ شکل‌گرفته در عرض­ های جنوبی ایران و همچنین تأثیر رشته‌کوه زاگرس از عوامل تأثیرگذار بر این بارش سنگین است. نتایج بررسی دورپیوندی نشان داد که شاخۀ نزولی النینوی متوسط تا قوی مانع حرکت هستۀ همرفتی فاز 2 و قوی MJO به سمت شرق بوده است. هنگامی که MJO در فاز 2 قرار داشته، بر روی مناطق جنوبی ایران یک بندال و گسترش پشته در سطوح بالا رخ داده و هم‌زمان با فاز مثبت NAO نیز یک واگرایی در سطوح بالا بر روی دریای مدیترانه (شکل‌گیری چرخند در شرق دریای مدیترانه) مشاهده شده است. بر طبق نتایج شبیه ­سازی مدل WRF، ضریب همبستگی 88% با سطح معنی‌داری 95% و درصد خطای 8% بین مقدار بارش شبیه‌سازی با دیدبانی نشان­دهندۀ توانایی مدل در پیش‌بینی این بارش است.

کلیدواژه‌ها

  1. اسعدی، ع.، احمدی گیوی، ف.، قادر، س.، و محب‌الحجه، ع. ر. (1390). بررسی دینامیک مسیر توفان مدیترانه از دیدگاه شار فعالیت موج راسبی. مجلۀ ژئوفیزیک ایران، 4، 45-31.
  2. بهرامی، ف.، رنجبر سعادت‌آبادی، ع.، مشکوتی، ا. ح.، و کمالی، غ. ع. (1397). مطالعۀ توفان‌های اقیانوس اطلس و دریای مدیترانه بر مبنای شار فعالیت موج راسبی در دوره‌های خشک و تر بهاره 1387 و 1397 در ایران. نشریۀ هواشناسی و علوم جو، 1، 20-1.
  3. رضائیان، م.، محب‌الحجه، ع. ر.، احمدی گیوی، ف.، و نصر اصفهانی، م. ع. (1392). تحلیل آماری-دینامیکی رابطۀ بین مسیر توفان مدیترانه و نوسان اطلس شمالی بر مبنای فرایافت فعالیت موج. مجلۀ فیزیک زمین و فضا، 2، 152-139.
  4. غلامی رستم، م.، ساداتی‌نژاد، س. ج.، و ملکیان، آ. (1397). بررسی مطالعات انجام‌شده دربارۀ تأثیر الگوهای دورپیوندی بر اقلیم ایران (1378-1393). مجلۀ علمی ترویجی نیوار، (102-103)، 78-73.
  5. فرج­زاده اصل، م.، احمدی، م.، علیجانی، ب.، قویدل رحیمی، ی.، مفیدی، ع.، و بابائیان، ا. (1392). بررسی وردایی الگوهای پیوند از دور و اثر آن‌ها بر بارش ایران. نشریۀ پژوهش­های اقلیم شناسی، (15-16)، 31-45.
  6. کریم­خانی، م.، جمشیدی خزلی، ت.، آزادی، م.، و فتاحی، ا. (1396). اثر تفکیک افقی مدل WRF بر روی بارش در حوضه­های آبریز کرخه و کارون. مجلۀ اکوبیولوژی تالاب، 34، 74-55.

 

7.    Ahmadi-Givi, F., Nasr-Esfahany, M. A., & Mohebalhojeh, A. R. (2013). Interaction of North Atlantic baroclinic wave packets and the Mediterranean storm track. Quarterly Journal of the Royal Meteorological Society, 140, 754 - 765.

  1. Alpert, P., Ziv, B., & Shafir, H. (2004). Semi‐objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. International Journal of Climatology, 24(8), 1001-1011.
  2. Barnston, A. G., & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115(6), 1083-1126.
  3. Chang, E. K. M. (1993). Downstream development of baroclinic waves as inferred from regression analysis. Journal of the Atmospheric Sciences, 50, 2038-2053.
  4. Corona, R., & Montaldo, N. (2017). On the role of NAO-driven interannual variability in rainfall seasonality on water resources and hydrologic design in a typical mediterranean basin. Journal of Hydrometeorology, 19, 485-498.
  5. Danielson, R. E., Gyakum, J. R., & Straub, D. N. (2006). A case study of downstream baroclinic development over the North Pacific Ocean. Part II: diagnoses of eddy energy and wave activity. Monthly Weather Review, 134, 1549-1567.
  6. Esler, J. G., & Haynes, P. H. (1999). Baroclinic wave breaking and internal variability of the tropospheric circulation. Journal of the Atmospheric Sciences, 56, 4014-4031.
  7. Ferranti, L., Palmer, T. N., Molteni, F., & Klinker, E. (1990). Tropical-extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences, 47(18), 2177-2199.
  8. Flocas, H. A., Simmonds, I., Kouroutzoglo, J., & Keay, K. (2010). On cyclonic tracks over the eastern Mediterranean. Journal of Climate, 23(19), 5243-5257.
  9. Higgins, R. W., & Mo, K. C. (1997). Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. Journal of Climate, 10(2), 223-244.
  10. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676-679.
  11. Hurrell, J. W., & van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301-326.
  12. Kamimera, H., Mori, S., Yamanaka, M. D., & Syamsudin, F. (2012). Modulation of diurnal rainfall cycle by the madden−julian oscillation based on one-year continuous observations with a meteorological radar in west sumatera. Scientific Online Letters On The Atmosphere, 8, 111-114.
  13. Knutson, T. R., & Weickmann, K. M. (1987). 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115(7), 1407-1436.
  14. Lau, K. M., & Phillips, T. J. (1986). Coherent Fluctuations of Fxtratropical Geopotential Height and Tropical Convection in Intraseasonal Time Scales. Journal of the Atmospheric Sciences, 43(11), 1164-1181.
  15. Madden, R. A., & Julian, P. R. (1971). Detection of a 40-50-day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5), 702-708.
  16. Maheras, P., Flocas, H. A., Patrikas, I., & Anagnostopoulou, C. H. R. (2001). A 40-year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. International Journal of Climatology, 21(1), 109-130.
  17. Nasr-Esfahany, M. A., Ahmadi-Givi, F., & Mohebalhojeh, A. R. (2011). An energetic view of the relation between the Mediterranean storm track and the North Atlantic Oscillation. Quarterly Journal of the Royal Meteorological Society, 137, 749-756.
  18. Nasuno, T. (2019). Moisture transport over the Western maritime continent during the 2015 and 2017 YMC Sumatra campaigns in global cloud-system-resolving simulations. Scientific Online Letters On The Atmosphere, 15, 99-106.
  19. Nazemosadat, J., & Ghasemi, A. R. (2004). Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. Journal of Climate, 17, 4005-4018.
  20. Nissen, K., Leckebusch, G. C., Pinto, J. G., Ulbrich, S., & Ulbrich, U. (2010). Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Science, 10(7), 1379-1391.
  21. Orlanski, I., & Katzfey, J. J. (1991). The life cycle of a cyclone wave in the southern hemisphere. Journal of the Atmospheric Sciences, 48, 1972-1998.
  22. Orlanski, I., & Sheldon, J. P. (1993). A case of downstream baroclinic development over western North America. Monthly Weather Review, 121, 2929-2950.

30.               Pagano, T. C., Mahani, S. H., Nazemosadat, M. J., & Sorooshian, S. (2003). Review of Middle Eastern hydroclimatology and seasonal teleconnections. Iranian Journal of Science and Technology, 27, 95-109.

  1. Plumb, R. A. (1986). Three-dimensional propagation of transient quasigeostrophic eddies and its relationship with the eddy forcing of the time-mean flow. Journal of the Atmospheric Sciences, 43, 1657-1678.
  2. Rodwell, M. J., Rowell, D. P., & Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320-323.
  3. Shi, J. J., Tao, W. K., Matsui, T., Cifelli, R., Hou, A., Lang, S., …, & Petersen, W. (2010). WRF simulations of the 20-22 January 2007 snow events over Eastern Canada: Comparison with in situ and satellite observations. Journal of Applied Meteorology and Climatology, 49(11), 2246–2266.
  4. Takaya, K., & Nakamura, H. (2000). A formulation of a phase-independent wave activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58, 608-627.
  5. Takemi, T., & Unuma, T. (2019). Diagnosing environmental properties of the July 2018 heavy rainfall event in Japan. Scientific Online Letters on the Atmosphere, 15, 60-65.
  6. Tartaglione, C. A., Smith, S. R., & O'Brien, J. J. (2003). ENSO impact on hurricane landfall probabilities for the Caribbean. Journal of Climate, 17, 2925-2931.
  7. Teng, K. C., Malonet, E., & Barnes, E. (2019). The Consistency of MJO teleconnection patterns: An explanation using linear rossby wave theory. Journal of Climate, 32(2), 531-548.
  8. Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4), 784-812.
  9. Wang, Z., & Yang, S. (2018). Teleconnection between summer NAO and East China Rainfall variations: A bridge effect of the Tibetan Plateau. Journal of Climate, 31, 6433-6444.
  10. Wu, P., Arbain, A. A., Mori, S., Hamada, J. I., Hattori, M., Syamsudin, F., & Yamanaka, M. D. (2013). The effects of an active phase of the Madden-Julian Oscillation on the extreme precipitation event over Western Java Island in January 2013. Scientific Online Letters on the Atmosphere, 9, 79-83.
  11. Zhang, P., Wand, B., & Wu, Z. (2019). Weak ElNiño and winter climate in the Mid -to High latitudes of Eurasia. Journal of Climate, 32(2), 405-421.
CAPTCHA Image