نوع مقاله : پژوهشی
نویسندگان
1 دانشجوی کارشناسی ارشد، گروه جغرافیا، دانشگاه فردوسی مشهد، آزمایشگاه علم/سیستم اطلاعات جغرافیایی و سنجش از دور (GISSRS: Lab)، مشهد، ایران
2 دانشیار گروه جغرافیا، دانشگاه فردوسی مشهد، آزمایشگاه علم/سیستم اطلاعات جغرافیایی و سنجش از دور (GISSRS: Lab)، مشهد، ایران
3 دانشیار گروه مهندسی و مدیریت آب، دانشگاه تربیت مدرس، تهران، ایران
4 استادیار گروه جغرافیا، دانشگاه فردوسی مشهد، مشهد، ایران
چکیده
یکی از پیامدهای اجتنابناپذیر رشد روزافزون جمعیت جهان، گسترش شهرنشینی است؛ ازاینرو ارائه چشماندازی از توسعه فضایی شهرها با هدف درک الگوی صحیح رشد شهر و فراهم آوردن زیرساختهای لازم از اهمیت بسیاری برخوردار است. ازآنجاکه کلانشهر قم یکی از شهرهای درگیر با مسئله رشد شهری بوده و آمار 95 درصد شهرنشینی را ثبت کرده است، تمرکز این پژوهش بر واکاوی توسعه فضایی اراضی شهری پیرامون این کلانشهر است. برای نیل به هدف مذکور، ابتدا ورودیهای مدل که همان نقشههای کاربری/پوشش اراضی و نقشه شایستگی رشد شهری منطقه هستند، تولید شدند. نقشههای کاربری/پوشش اراضی منطقه برای سالهای 2000، 2010 و 2020 با روش جنگل تصادفی در محیط سامانه Google Earth Engine و نقشه شایستگی رشد شهری منطقه برای سالهای 2000 و 2010 به کمک تحلیلهای MCDM مبتنی بر GIS بهصورت مجزا تولید شد. درنهایت این نقشهها وارد الگوریتمهای ترکیبی ANN-CA-Markov و SVM-CA-Markov شد و دو نقشه برای کاربری/پوشش اراضی منطقه در سال 2020 شبیهسازی شد. اعتبارسنجی مدلها نشان داد که الگوریتم SVM-CA-Markov با مساحت زیر منحنی ROC معادل 96/0 از صحت بیشتری برخوردار بود و برای مدلسازی افق 2040 بهعنوان الگوریتم بهینه انتخاب شد. نتایج حاکی از توسعه فضایی روزافزون این کلانشهر است؛ بهطوریکه وسعت اراضی شهری این منطقه از 62/139 کیلومتر مربع در سال 2020 به بیش از 183 کیلومترمربع در سال 2040 افزایش خواهد یافت. ارزیابی نتایج میتواند به مدیران مربوط در راستای اتخاذ سیاستهای لازم برای مدیریت هرچهبهتر شرایط پیش رو یاری رساند. این امر مهم میتواند از طریق برنامهریزی برای توسعه منظم شبکه معابر، گسترش فضاهای سبز شهری و... محقق شود. در این راستا سازمانها و مسئولان محلی باید ضمن اشراف کامل بر جهات توسعه این کلانشهر، نظارتهای هدفمند بر این مسئله داشته باشند.
کلیدواژهها
- تغییرات کاربری/پوشش اراضی
- کلانشهر قم
- رشد شهری
- تحلیلهای تصمیمگیری چندمعیاره (MCDM)
- یادگیری ماشین
- زنجیره مارکوف
- سلولهای خودکار
موضوعات
- اکبری، د.، مرادی زاده، م.، و اکبری، م. (1398). تغییرات کاربری اراضی و شبیه سازی رشد و توسعه شهری رشت با استفاده از مدل شبکه عصبی و سلول های خودکار زنجیره مارکوف. پژوهش و برنامهریزی شهری، 10(39 )، 157-166.
- امینی پارسا، و.، صالحی، ا.، عادلی قرجهداغی، ش.، و عزیزی، ع. (1394). شبیهسازی تغییرات پویای کاربری زمین با استفاده از مدل تلفیقی CA-Markov (مطالعه موردی: شهرستان ملکان). علوم محیطی، 13(3 )، 133-142.
- رفیعیان، م.، و زاهد، ن. (1399). سنجش جدایی گزینی فضایی شهر قم و ارتباط آن با ساختار فضایی شهر. آمایش جغرافیایی فضا، 10(35 )، 217-238.
- سلیمانی، م.، کمانرودی، م.، احمدی، م.، و زنگانه، ا. (1399). تحلیل ساختار فضایی کلان شهر قم با تأکید بر شکلگیری هستههای فرعی. مطالعات شهر ایرانی-اسلامی، 36(9)، 5-22.
- مجتبایی، ک.، و نوابخش، م. (1398). وضعیت سنجی شاخص های تغییر ساختار و نظم اجتماعی ناشی از مهاجرت در شهر قم. پژوهشنامه نظم و امنیت انتظامی، 12(2)، 209-236.
- مرکز آمار ایران. (1395)، سرشماری رسمی سال 1395. amar.org.ir
- میثاق، ن.، نیسانی سامانی، ن.، و تومانیان، آ. (1397). شبیهسازی رشد شهری تبریز با استفاده از مدل CA-Markov و تصمیمگیری چندمعیاره. پژوهشهای جغرافیای انسانی (پژوهشهای جغرافیایی)، 50(1 )، 217-231.
- یوسفزاده، ف.، اجزا شکوهی، م.، و مینائی، م. (1398). شبیهسازی و بصریسازی رشد شهری مشهد و حومه تا سال 2050 (پایاننامه منتشرنشده کارشناسیارشد). دانشگاه فردوسی مشهد، ایران.
- اداره کل هواشناسی استان قم. (1402). بازیابی از https://www.ghommet.ir/#/home
- رنجبرسعادت آبادی، ع.، و فتاحی، ا. (1397). برآورد بیشینه بارش محتمل (PMP) در حوضه آبریز قمرود به روش همدیدی. تحقیقات کاربردی علوم جغرافیایی (علوم جغرافیایی)، 18(50 )، 61-75.
- رفعتی، م.، تقوی، آ.، و کرباسی، ع. (1398). سهم منابع طبیعی و انسان ساخت در توزیع عناصرسنگین در خاکهای اطراف معدن منگنز ونارچ قم. علوم و تکنولوژی محیط زیست، 21(4)، 153-160.
- منصوریان، ح.، نقدیزادگان جهرمی، م.، و گومه، ز. (1400). تحلیل فضایی-زمانی فرم شهری در کلانشهرهای ایران. پژوهشهای جغرافیای برنامهریزی شهری، 9(2)، 487-506.
- Al Rifat, S. A., & Liu, W. (2022). Predicting future urban growth scenarios and potential urban flood exposure using Artificial Neural Network-Markov Chain model in Miami Metropolitan Area. Land Use Policy, 114, 105994.
- AlQadhi, S., Mallick, J., Talukdar, S., Bindajam, A. A., Shohan, A. A. A., & Shahfahad. (2021). Quantification of urban sprawl for past-to-future in Abha City, Saudi Arabia. Cmes-Computer Modeling in Engineering & Sciences, 129(2), 755-786.
- Alsharif, M., Alzandi, A. A., Shrahily, R., & Mobarak, B. (2022). Land use land cover change analysis for urban growth prediction using landsat satellite data and Markov Chain model for Al Baha region Saudi Arabia. Forests, 13(10), 1530.
- Aslam, R. W., Shu, H., & Yaseen, A. (2023). Monitoring the population change and urban growth of four major Pakistan cities through spatial analysis of open source data. Annals of GIS, 29(3), 355-367.
- Bajracharya, P., & Sultana, S. (2022). Examining the use of urban growth boundary for future urban expansion of Chattogram, Bangladesh. Sustainability, 14(9), 5546.
- Baqa, M. F., Chen, F., Lu, L., Qureshi, S., Tariq, A., Wang, S., Jing, L., Hamza, S., & Li, Q. (2021). Monitoring and modeling the patterns and trends of urban growth using urban sprawl matrix and CA-Markov model: A case study of Karachi, Pakistan. Land, 10(7), 700.
- Breiman, L. (2001). Random forests. Machine Learning, 45, 5-32.
- Chettry, V., & Surawar, M. (2021). Delineating urban growth boundary using remote sensing, ANN-MLP and CA model: A case study of Thiruvananthapuram urban agglomeration, India. Journal of the Indian Society of Remote Sensing, 49(10), 2437-2450.
- Cortes, C., & Vapnik, V. (1995). Support-vector networks. Machine Learning, 20, 273-297.
- Daneshfar, R., Keivanimehr, F., Mohammadi-Khanaposhtani, M., & Baghban, A. (2020). A neural computing strategy to estimate dew-point pressure of gas condensate reservoirs. Petroleum Science and Technology, 38(10), 706-712.
- Dhanaraj, K., & Jain, G. V. (2022). Urban growth simulations in a medium-sized City of Mangaluru, India, through CA-Based SLEUTH Urban Growth Model. Journal of the Indian Society of Remote Sensing, 1-21. 1007/s12524-022-01638-0
- Ding, Y., Shi, B., Su, G., Li, Q., Meng, J., Jiang, Y., Qin, Y., Dai, L., & Song, S. (2021). Assessing suitability of human settlements in high-altitude area using a comprehensive index method: A case study of Tibet, China. Sustainability, 13(3), 1485.
- Fang, Z., Ding, T., Chen, J., Xue, S., Zhou, Q., Wang, Y., Wang, Y., Huang, Z., & Yang, S. (2022). Impacts of land use/land cover changes on ecosystem services in ecologically fragile regions. Science of the Total Environment, 831, 154967.
- Fawcett, T. (2006). An introduction to ROC analysis. Pattern Recognition Letters, 27(8), 861-874.
- Feng, Y., Liu, Y., & Batty, M. (2016). Modeling urban growth with GIS based cellular automata and least squares SVM rules: a case study in Qingpu–Songjiang area of Shanghai, China. Stochastic Environmental Research and Risk Assessment, 30, 1387-1400.
- Fu, F., Deng, S., Wu, D., Liu, W., & Bai, Z. (2022). Research on the spatiotemporal evolution of land use landscape pattern in a county area based on CA-Markov model. Sustainable Cities and Society, 80, 103760.
- Gibas, P., & Majorek, A. (2020). Analysis of land-use change between 2012–2018 in Europe in terms of sustainable development. Land, 9(2), 46.
- Girma, R., Fürst, C., & Moges, A. (2022). Land use land cover change modeling by integrating artificial neural network with cellular Automata-Markov chain model in Gidabo river basin, main Ethiopian rift. Environmental Challenges, 6, 100419.
- Guan, Y., Li, X., Yang, J., Li, S., & Tian, S. (2022). Spatial differentiation of comprehensive suitability of urban human settlements based on GIS: A case study of Liaoning province, China. Environment, Development and Sustainability, 24(3), 4150-4174.
- Gupta, P., & Bharat, A. (2022). Developing sustainable development Index as a tool for appropriate urban land take. Environment, Development and Sustainability, 24(11), 13378-13406.
- Gupta, R., Sharma, M., Singh, G., & Joshi, R. K. (2023). Characterizing urban growth and land surface temperature in the western himalayan cities of India using remote sensing and spatial metrics. Frontiers in Environmental Science, 11, 60.
- Halder, S., Das, S., & Basu, S. (2023). Use of support vector machine and cellular automata methods to evaluate impact of irrigation project on LULC. Environmental Monitoring and Assessment, 195(1), 3.
- Harmay, N. S. M., Kim, D., & Choi, M. (2021). Urban heat island associated with land use/land cover and climate variations in Melbourne, Australia. Sustainable Cities and Society, 69, 102861.
- Harrington, P. D. B. (1993). Sigmoid transfer functions in backpropagation neural networks. Analytical Chemistry, 65(15), 2167-2168.
- Hind, M., M’hammed, S., Djamal, A., & Zoubida, N. (2022). Assessment of land use–land cover changes using GIS, remote sensing, and CA–Markov model: A case study of Algiers, Algeria. Applied Geomatics, 1-15. 1007/s12518-022-00472-w
- Hossain Shubho, M. T., & Islam, I. (2020). An integrated approach to modeling urban growth using modified built-up area extraction technique. International Journal of Environmental Science and Technology, 17, 2793-2810.
- Hossain, M. S., Khan, M. A. H., Oluwajuwon, T. V., Biswas, J., Rubaiot Abdullah, S., Tanvir, M. S. S. I., …, Chowdhury, M. N. A. (2023). Spatiotemporal change detection of land use land cover (LULC) in Fashiakhali wildlife sanctuary (FKWS) impact area, Bangladesh, employing multispectral images and GIS. Modeling Earth Systems and Environment, 9, 3153-3173.
- Ibrahim, H., Khattab, Z., Khattab, T., & Abraham, R. (2021). Expatriates’ housing dispersal outlook in a rapidly developing metropolis based on urban growth predicted using a machine learning algorithm. Housing Policy Debate, 33(3), 641-661.
- Isinkaralar, O., Varol, C., & Yilmaz, D. (2022). Digital mapping and predicting the urban growth: integrating scenarios into cellular automata—Markov chain modeling. Applied Geomatics, 14, 695-705.
- Jana, C., Mandal, D., Shrimali, S. S., Alam, N. M., Kumar, R., Sena, D. R., & Kaushal, R. (2020). Assessment of urban growth effects on green space and surface temperature in Doon Valley, Uttarakhand, India. Environmental Monitoring and Assessment, 192, 1-17.
- Juanita, A.-D., Ignacio, P., Jorgelina, G.-A., Cecilia, A.-S., Carlos, M., & Francisco, N. (2019). Assessing the effects of past and future land cover changes in ecosystem services, disservices and biodiversity: A case study in Barranquilla Metropolitan Area (BMA), Colombia. Ecosystem Services, 37, 100915.
- Kamaraj, M., & Rangarajan, S. (2022). Predicting the future land use and land cover changes for Bhavani basin, Tamil Nadu, India, using QGIS MOLUSCE plugin. Environmental Science and Pollution Research, 29, 86337-86348.
- Kamranzad, F., Memarian, H., & Zare, M. (2020). Earthquake risk assessment for Tehran, Iran. ISPRS International Journal of Geo-Information, 9(7), 430.
- Khan, A., & Sudheer, M. (2022). Machine learning-based monitoring and modeling for spatio-temporal urban growth of Islamabad. The Egyptian Journal of Remote Sensing and Space Science, 25(2), 541-550.
- Kim, Y., Safikhani, A., & Tepe, E. (2022). Machine learning application to spatio-temporal modeling of urban growth. Computers, Environment and Urban Systems, 94, 101801.
- Kisamba, F. C., & Li, F. (2023). Analysis and modelling urban growth of Dodoma urban district in Tanzania using an integrated CA–Markov model. GeoJournal, 88(1), 511-532.
- Lunyolo, L. D., Khalifa, M., & Ribbe, L. (2021). Assessing the interaction of land cover/land use dynamics, climate extremes and food systems in Uganda. Science of the Total Environment, 753, 142549.
- Ma, S., Cai, Y., Ai, B., Xie, D., & Zhao, Y. (2022). Delimiting the urban growth boundary for sustainable development with a pareto front degradation searching strategy based optimization model. Journal of Cleaner Production, 345, 131191.
- Marques, M.-L., Müller-Pessôa, V., Camargo, D., & Cecagno, C. (2021). Simulação de cenários urbanos por autômato celular para modelagem do crescimento de Campinas–sp, Brasil. EURE (Santiago), 47(142), 207-227.
- McDonald, R. I., Mansur, A. V., Ascensão, F., Colbert, M. l., Crossman, K., Elmqvist, T., Gonzalez, A., Güneralp, B., Haase, D., & Hamann, M. (2020). Research gaps in knowledge of the impact of urban growth on biodiversity. Nature Sustainability, 3(1), 16-24.
- Minaei, F., Minaei, M., Kougias, I., Shafizadeh-Moghadam, H., & Hosseini, S. A. (2021). Rural electrification in protected areas: A spatial assessment of solar photovoltaic suitability using the fuzzy best worst method. Renewable Energy, 176, 334-345.
- Minaei, M., Shafizadeh‐Moghadam, H., & Tayyebi, A. (2018). Spatiotemporal nexus between the pattern of land degradation and land cover dynamics in Iran. Land Degradation & Development, 29(9), 2854-2863.
- Mozaffaree Pour, N., Karasov, O., Burdun, I., & Oja, T. (2022). Simulation of land use/land cover changes and urban expansion in Estonia by a hybrid ANN-CA-MCA model and utilizing spectral-textural indices. Environmental Monitoring and Assessment, 194(8), 584.
- Musavengane, R., Siakwah, P., & Leonard, L. (2020). The nexus between tourism and urban risk: Towards inclusive, safe, resilient and sustainable outdoor tourism in African cities. Journal of Outdoor Recreation and Tourism, 29, 100254.
- Pilehvar, A. A. (2020). Urban unsustainability engineering in metropolises of Iran. Iranian Journal of Science and Technology, Transactions of Civil Engineering, 44(3), 775-785.
- Qiu, B., Zhou, M., Qiu, Y., Liu, S., Ou, G., Ma, C., Tu, J., & Li, S. (2022). An integrated spatial autoregressive model for analyzing and simulating urban spatial growth in a Garden city, China. International Journal of Environmental Research and Public Health, 19(18), 11732.
- Rahnama, M. R. (2021). Forecasting land-use changes in Mashhad Metropolitan area using Cellular Automata and Markov chain model for 2016-2030. Sustainable Cities and Society, 64, 102548.
- Regasa, M. S., & Nones, M. (2022). Past and future land use/land cover changes in the Ethiopian Fincha Sub-Basin. Land, 11(8), 1239.
- Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49-57.
- Rienow, A., & Goetzke, R. (2015). Supporting SLEUTH–Enhancing a cellular automaton with support vector machines for urban growth modeling. Computers, Environment and Urban Systems, 49, 66-81.
- Rimal, B., Zhang, L., Keshtkar, H., Haack, B. N., Rijal, S., & Zhang, P. (2018). Land use/land cover dynamics and modeling of urban land expansion by the integration of cellular automata and markov chain. ISPRS International Journal of Geo-Information, 7(4), 154.
- Rumelhart, D. E., Hinton, G. E., & Williams, R. J. (1986). Learning representations by back-propagating errors. Nature, 323(6088), 533-536.
- Sang, L., Zhang, C., Yang, J., Zhu, D., & Yun, W. (2011). Simulation of land use spatial pattern of towns and villages based on CA–Markov model. Mathematical and Computer Modelling, 54(3-4), 938-943.
- Shafizadeh Moghadam, H., & Helbich, M. (2013). Spatiotemporal urbanization processes in the megacity of Mumbai, India: A Markov chains-cellular automata urban growth model. Applied Geography, 40, 140-149.
- Shafizadeh-Moghadam, H., Minaei, M., Pontius Jr, R. G., Asghari, A., & Dadashpoor, H. (2021). Integrating a forward feature selection algorithm, random forest, and cellular automata to extrapolate urban growth in the Tehran-Karaj region of Iran. Computers, Environment and Urban Systems, 87, 101595.
- Tariq, A., Yan, J., & Mumtaz, F. (2022). Land change modeler and CA-Markov chain analysis for land use land cover change using satellite data of Peshawar, Pakistan. Physics and Chemistry of the Earth, Parts A/B/C, 128, 103286.
- (2022). World population prospects 2022: Summary of results. New York, United Nations Population Fund.
- Yariyan, P., Ali Abbaspour, R., Chehreghan, A., Karami, M., & Cerdà, A. (2022). GIS-based seismic vulnerability mapping: a comparison of artificial neural networks hybrid models. Geocarto International, 37(15), 4312-4335.
- Zhang, C., Yao, D., Zhen, Y., Li, W., & Li, K. (2022). Mismatched relationship between urban industrial land consumption and growth of manufacturing: Evidence from the Yangtze River Delta. Land, 11(9), 1390.
- Zhang, J., Wu, D., Zhu, A.-X., & Zhu, Y. (2023). Modelling urban expansion with cellular automata supported by urban growth intensity over time. Annals of GIS, 29(3), 337-353.
ارسال نظر در مورد این مقاله