نوع مقاله : پژوهشی- مطالعه موردی
نویسندگان
1 دانشجوی دکتری اقلیمشناسی، واحد اهر، دانشگاه آزاد اسلامی، اهر،ایران
2 استادیار اقلیمشناسی، گروه جغرافیا، دانشکده علوم انسانی، واحد اهر، دانشگاه آزاد اسلامی، اهر، ایران
3 استاد، گروه سنجش از دور و GIS ، دانشکده برنامهریزی و علوم محیطی، دانشگاه تبریز، تبریز، ایران
چکیده
در این پژوهش سعی شد در منطقه اهر که جنوب جنگلهای ارسباران قرار گرفته و دارای مراتع بیشماری از گونههای مختلف است، میزان تبخیر و تعرق واقعی مراتع آویشن، نعناع و یونجه با استفاده از روشSEBAL محاسبه شود. برای این کار از 6 تصویر ماهواره لندست 8 بین سالهای 2017 تا 2020 که در دوره اولیه و پایانی رشد قرار داشتند، استفاده شد و نتایج با روش پنمن مانتیث مقایسه شد. نتایج بیانگر آن بود که براساس روش سبال، محصول نعنا در دوره اولیه رشد محصول به تاریخ 29/5/2021 کمترین میزان تبخیر و تعرق را با مقدار عددی 84/2 میلیمتر در روز و محصول یونجه نیز در دوره اولیه رشد محصول به تاریخ 11/6/2019 بیشترین میزان تبخیر و تعرق را با مقدار عددی 49/3 میلیمتر در روز داشته است. همچنین در دوره پایانی رشد در روش سبال، محصول نعنا در تاریخ 28/8/2018 کمترین میزان تبخیر و تعرق را با مقدار عددی 18/6 میلیمتر در روز و محصول آویشن نیز در دوره پایانی رشد محصول به تاریخ 19/7/2022 بیشترین میزان تبخیر و تعرق را با مقدار عددی 41/7 میلیمتر در روز داشته است. درنهایت براساس مقایسههای انجامگرفته، میان روشهای موردمطالعه در دوره اولیه و پایانی رشد از نظر مجذور میانگین مربعات خطا، میانگین انحراف مطلق و ضریب تعیین، میتوان چنین نتیجه گرفت که روش سبال در مقایسه با روش پنمن مانتیث دارای میزان خطا با RMSE برابر با 717/0، MAD برابر با 658/0 و ضریب تعیین 84/0 میلیمتر در روز بوده که قابلقبول است.
کلیدواژهها
موضوعات
- اسدی، م.، باعقیده، م.، ولیزاده کامران، خ.، و ادب، ح. (1399). ارزیابی همبستگی پوشش گیاهی با دمای سطح زمین با استفاده از تصاویر ماهوارهای (مطالعه موردی: استان اردبیل). پژوهشهای محیطزیست، 11(22)، 98-87.
- اسدی، م.، ولیزاده کامران، خ.، باعقیده، م.، و ادب، ح. (1399). برآورد میزان تبخیر و تعرق واقعی با استفاده از الگوریتم سبال کوهستانی بر پایه گیاه نخود (مطالعه موردی: نیمه شمالی استان اردبیل). هیدروژئومورفولوژی، 7(22)، 85-67.
- اسدی، م.، ولیزاده کامران، خ.، باعقیده، م.، و ادب، ح. (1399). مقایسه و تخمین سپیدایی سطوح مختلف کاربری اراضی با استفاده از روش سبال و متریک. نشریه تحقیقات کابردی علوم جغرافیایی، ۲۰(۵۹)، 171-157.
- سهیلیفر، ز.، میرلطیفی، س. م.، ناصری، عب. ع.، و عصاری، م. (1392). برآورد تبخیر و تعرق واقعی نیشکر با استفاده از دادههای سنجش از دور در اراضی کشت و صنعت نیشکر میرزا کوچک خان. نشریه دانش آب و خاک، 23(1)، 163-151.
- ولیزاده کامران، خ.، و اسدی، م. (1402). برآورد سطح زیرکشت گندم با استفاده از تصاویر ماهواره لندست ۸ (مطالعه موردی: نیمه شمالی استان اردبیل). فضای جغرافیایی، ۲۳(۸۱)، 59-45.
- Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for mapping evapotranspiration with internalized calibration (METRIC)—Model. Journal of Irrigation and Drainage Engineering, 133(4), 380-394.
- Allen, R., Waters, R., Tasumi, M., Trezza, R., & Bastianssen, W. (2002(. SEBAL (surface energy balance algorithms for land)- Advanced training and user's manual, version 1.0.
- Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (Eds.). (1998). FAO Irrigation and Drainage. No. Paper 56.
- Allen, R. G., Tasumi, M., & Trezza, R. (2007). Satellite-based energy balance for Mapping Evapotranspiration with Internalized Calibration (METRIC) model. Journal of Irrigation Drainage Engineering, 133, 380–394.
- Al Zayed, I. S., Elagib, N. A., Ribbe, L., & Heinrich, J. (2016). Satellite-based evapotranspiration over Gezira Irrigation Scheme, Sudan: A comparative study. Agricultural Water Management, 177, 66-76.
- Asadi, M., & Karami, M. (2020). Estimation of evapotranspiration in Fars province using experimental indicators. Journal of Applied Researches in Geographical Sciences, 20(56), 159-175.
- Asadi, M., & Kamran, K. V. (2022). Comparison of SEBAL, METRIC, and ALARM algorithms for estimating actual evapotranspiration of wheat crop. Theoretical and Applied Climatology, 149(1-2), 327-337.
- Asadi, M., & Kamran, K. V. (2023). Estimating selected cultivated crop water requirement-based surface energy balance algorithm. Arabian Journal of Geosciences, 16, 298.
- Bastiaanssen, W. G. M., Menenti, M., Feddes, R. A., & Holtslag, A. A. M. (1998). A remote sensing surface energy balance algorithm for land (SEBAL). Journal of Hydrology, (212–213), 198–212.
- Costa, J. D. O., Coelho, R. D., Wolff, W., José, J. V., Folegatti, M. V., & Ferraz, S. F. D. B. (2019). Spatial variability of coffee plant water consumption based on the SEBAL algorithm. Scientia Agricola, 76(2), 93-101.
- de Arellano, J. V.-G., Van Heerwaarden, C. C., Van Stratum, B. J. H., & Van Den Dries, K. (2015). Atmospheric boundary layer: Integrating air chemistry and land interactions. New York: Cambridge University Press.
- Du, J., Song, K., Wang, Z., Zhang, B., & Liu, D. (2013). Evapotranspiration estimation based on MODIS products and surface energy balance algorithms for land (SEBAL) model in Sanjiang Plain, Northeast China. Chinese Geographical Science, 23(1), 73-91.
- Elnmer, A., Khadr, M., Kanae, S., & Tawfik, A. (2019). Mapping daily and seasonally evapotranspiration using remote sensing techniques over the Nile delta. Agricultural Water Management, 213, 682-692.
- Genanu, M., Alamirew, T., Senay, G., & Gebremichael, M. (2017). Remote sensing based estimation of evapo-transpiration using selected algorithms: The case of Wonji Shoa Sugar Cane Estate, Ethiopia. Preprints, 2016080098.
- Hu, Z., Yu, G., Zhou, Y., Sun, X., Li, Y., Shi, P., …, & Li, S., (2009). Partitioning of evapotranspiration and its controls in four grassland ecosystems: Application of a two-source model. Agricultural and Forest Meteorology, 149, 1410–1420.
- Karami, M., & Asadi, M. (2016). Estimates and zoning of reference evapotranspiration by FAO-penman-monteith (Case study: North West of Iran). International Journal of Scientific Research in Science, Engineering and Technology, 2(1), 210-216.
- Kosa, P. (2011). The effect of temperature on actual evapotranspiration based on Landsat 5 TM satellite imagery. In L. Labedzki (Ed.), Evapotranspiration. DOI: 10.5772/14012/
- Kundu, S., Mondal, A., Khare, D., Hain, C., & Lakshmi, V. (2018). Projecting climate and land use change impacts on actual evapotranspiration for the Narmada River Basin in central India in the future. Remote Sensing, 10(4), 578.
- Lage, M., Bamouh, A., Karrou, M., & El Mourid, M. (2003). Estimation of rice evapotranspiration using a microlysimeter technique and comparison with FAO Penman-Monteith and Pan evaporation methods under Moroccan conditions. Agronomie, 23, 625–631.
- Laipelt, L., Henrique Bloedow Kayser, R., Santos Fleischmann, A., Ruhoff, A., Bastiaanssen, W., Erickson, T. A., & Melton, F. (2021). Long-term monitoring of evapotranspiration using the SEBAL algorithm and google earth engine cloud computing. Remote Sensing, 178, 81–96.
- Liu, X., Xu, J., Wang, W., Lv, Y., & Li, Y. (2020). Modeling rice evapotranspiration under water-saving irrigation condition: Improved canopy-resistance-based. Journal of Hydrology, 590, 125435
- Ma, W., Hafeez, M., Rabbani, U., Ishikawa, H., & Ma, Y. (2012). Retrieved actual ET using SEBS model from Landsat-5 TM data for irrigation area of Australia. Atmospheric Environment, 59, 408-414.
- Mahmoud, S. H., & Alazba, A. A. (2016). A coupled remote sensing and the Surface Energy Balance based algorithms to estimate actual evapotranspiration over the western and southern regions of Saudi Arabia. Journal of Asian Earth Sciences, 124, 269-283.
- Mather, P., & Tso, B. (2016). Classification methods for remotely sensed data. Florida: CRC Press.
- McShane, R. R., Driscoll, K. P., & Sando, R. (2017). A review of surface energy balance models for estimating actual evapotranspiration with remote sensing at high spatiotemporal resolution over large extents. Scientific Investigations Report, Series Number 2017-5087.
- Mkhwanazi, M., Chávez, J. L., & Andales, A. A. (2015). SEBAL-A: A remote sensing ET algorithm that accounts for advection with limited data. Part I: Development and validation. Remote Sensing, 7(11), 15046-15067.
- Oberg, J. W., & Melesss, A. M. (2006). Evapotranspiration dynamics at an ecohydrological restoration site: an energy balance and remote sensing approach. JAWRA Journal of the American Water Resources Association, 42(3), 565-582.
- Omidvar, H., Song, J., Yang, J., Arwatz, G., Wang, Z.H., Hultmark, M., Kaloush, K., & Bou‐Zeid, E. (2018). Rapid modification of urban land surface temperature during rainfall. Water Resources Research, 54(7), 4245-4264.
- Owaneh, O. M., & Suleiman, A. A. (2018). Comparison of the performance of ALARM and SEBAL in estimating the actual daily ET from Satellite data. Journal of Irrigation and Drainage Engineering, 144(9), 04018024.
- Qiu, R., Liu, C., Cui, N., Wu, Y., Wang, Z., & Li, G. (2019). Evapotranspiration estimation using a modified Priestley-Taylor model in a rice-wheat rotation system. Agricultural Water Management, 224, 105755.
- Rawat, K. S., Singh, S. K., Bala, A., & Szabó, S. (2019). Estimation of crop evapotranspiration through spatial distributed crop coefficient in a semi-arid environment. Agricultural Water Management, 213, 922-933.
- Ruhoff, A., Paz, A. R., Collischonn, W., Aragao, L. E. O. C., Rocha, H. R., & Malhi, Y. S. (2012). A MODIS-based energy balance to estimate evapotranspiration for clear-sky days Brazilian tropical savannas. Remote Sensing Journal, 4, 703-725.
- Silva, B. B. D., Mercante, E., Boas, M. A. V., Wrublack, S. C., & Oldoni, L. V., (2018). Satellite-based ET estimation using Landsat 8 images and SEBAL model. Revista Ciência Agronômica, 49(2), 221-227.
- Singh, R. K., Irmak, A., Irmak, S., & Martin, D. L. (2008). Application of SEBAL model for mapping evapotranspiration and estimating surface energy fluxes in south-central Nebraska. Journal of irrigation and Drainage Engineering, 134(3), 273-285.
- Su, Z. (2002). The Surface Energy Balance System (SEBS) for estimation of turbulent heat fluxes. Hydrology and Earth System Sciences, 6(1), 85-100.
- Valayamkunnath, P., Sridhar, V., Zhao, W., & Allen, R. G. (2018). Intercomparison of surface energy fluxes, soil moisture, and evapotranspiration from eddy covariance, largeaperture scintillometer, and modeling across three ecosystems in a semiarid climate. Agricultural and Forest Meteorology, 248, 22–47.
- Yang, Y., Zhou, X., Yang, Y., Bi, S., Yang, X., & Li Liu, D., (2018). Evaluating water-saving efficiency of plastic mulching in Northwest China using remote sensing and SEBAL. Agricultural Water Management, 209, 240-248.
- Zhou, X., Bi, S., Yang, Y., Tian, F., & Ren, D. (2014). Comparison of ET estimations by the three-temperature model, SEBAL model and eddy covariance observations. Journal of Hydrology, 519, 769-776.
- Zotarelli, L., Dukes, M. D., Romero, C. C., Migliaccio, K. W., & Morgan, K. T. (2010). Step by step calculation of the Penman-Monteith Evapotranspiration (FAO-56 Method). Institute of Food and Agricultural Sciences. University of Florida.
ارسال نظر در مورد این مقاله