نوع مقاله : مطالعه موردی
نویسندگان
1 دانشجوی دکتری آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامهریزی، دانشگاه اصفهان، اصفهان، ایران
2 استاد هید رواقلیم، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامهریزی، دانشگاه اصفهان، اصفهان، ایران
3 دانشیار آب و هواشناسی، گروه جغرافیای طبیعی، دانشکده جغرافیا و برنامهریزی، دانشگاه اصفهان، اصفهان، ایران
چکیده
حوضه آبی کارون شمالی در تأمین پایدار منابع آب جنوب غرب و فلات مرکزی ایران مؤثر است. رخداد خشکسالیهای حوضه به کاهش 50% آبدهی و افت سطح ایستابی آبخوانها منجر شده است. زیاد بودن ضریب تغییرات آبدهی حوضه (63%) بیانگر آسیبپذیری منابع آب است. برای تحلیل شاخص آسیبپذیری اقلیمی (2020-1990) از روش تحلیل مؤلفههای مبنا و برای رتبه بندی عامل از شاخص مقدار ویژه استفاده شد. یافتههای آماری نشان داد، مهمترین عاملهای مؤثر در آسیب پذیری اقلیمی(CVI) حوضه کارون شمالی، تغییرپذیری دبی (W=1.987)، فراوانی خشکسالی (W=1.658)، آب کشاورزی (W=1.33) و کسری مخزن آبخوان (W=1.09) هستند. زیرحوضه های بهشتآباد، ونک و لردگان دارای ضریب آسیبپذیری بحرانی و زیاد هستند و بازفت و کوهرنگ کمترین آسیبپذیری را دارند. برای آیندهنگری حوضه از شرایط اقلیمی (2040-2020) و مبتنی بر تغییر اقلیم در سناریوهای SSp4.5,SSp 8.5 گزارش ششم و پیشرانهای منفی و مثبت برنامههای توسعه حوضه در افق 1420 استفاده شد. یافتهها نشان داد، با ادامه روند فعلی دما و رخداد خشکسالیها و اجرای پروژههای انتقال آب و عمرانی در چارچوب پیشرانهای منفی، شدت شاخص آسیبپذیری بیشتر میشود، اما با انتخاب راهبردهای مبتنی بر پیشرانهای مثبت سازگاری با تغییر اقلیم، اصلاح الگوی مصرف و تعدیل میزان آب قابلانتقال (از 770 به 212) شاخص آسیبپذیری اقلیمی در چشمانداز (2040-2020) کاهش مییابد؛ تداوم وضع موجود به افزایش شاخص آسیبپذیری، تنشهای اجتماعی و مهاجرتهای اقلیمی منجر خواهد شد؛ ازاینرو بازنگری در راهبردهای بهرهبرداری، تعدیل برنامههای توسعه، انتخاب راهبردهای سازگاری تغییر اقلیم و اصلاح الگوی مصرف آب مبتنی بر توان اکولوژی به افزایش تابآوری و پایداری منابع آب کمک می کند.
کلیدواژهها
موضوعات
- انصاری، ث.، و دهبان، ح. (1401). بررسی روند تغییرات دما و بارش حوزههای آبریز ایران در افق 20 سال آینده براساس برونداد مدلهای CMIP6. مجله پژوهش آب ایران، 16(1)، 11-24.
- انصاری، ث.، و مساح بوانی، ع. ر. (1397). ارزیابی راهکارهای سازگاری با تغییر اقلیم براساس نشانگرهای اجتماعی، اقتصادی، زیستمحیطی و امنیت آبی. تحقیقات منابع آب ایران، 14(5)، 237-253.
- سازمان مدیریت و برنامهریزی چهار محال و بختیاری. ( 1400). سند ملی آمایش استانی. 172-195.
- صالح، ا.، و صالحنیا، ن. (1401). بررسی نقش تنوع معیشتی در تابآوری و سطح رفاه جامعه روستایی در مواجهه با تغییر اقلیم. مجله آب و توسعه پایدار، 9(1)، 75-84.
- فرمانبر، ز.، و دلاور، م. (1396). بررسی اثرات تغییر اقلیم بر سیستمهای منابع آب و کشاورزی در چارچوب ارزیابی منطقهای. تحقیقات منابع آب ایران، 13(4)، 75-88.
- محمدی، پ.، ملکیان، ا.، قربانی، م.، و نظری سامانی، ع. ا. (1398). بررسی ارتباط بین وضعیت آسیبپذیری جوامع و تغییرات آب و هوایی در استان کرمانشاه. جغرافیا و پایداری محیط (پژوهشنامه جغرافیایی)، 9(32)، 47-33.
- وحدانی، اقبال، محمدی، حسین، و اسدیان، فریده. (1399). پهنه بندی شاخص آسیبپذیری ساختاری ناشی از تغییر اقلیم (مطالعه موردی استان کردستان). علوم و تکنولوژی محیطزیست، 22(1)، 38-48.
- Berrang-Ford, L., Siders, A. R., Lesnikowski, A., Fischer, A. P., Callaghan, M. W., Haddaway, N. R., ... & Abu, T. Z. (2021). A systematic global stocktake of evidence on human adaptation to climate change. Nature Climate Change, 11(11), 989-1000.
- Bijl, D. L., Beimans, H., Bogaart, P. W., Dekker S. C., Doelman, J. C., Stehfest, E., & van Vuuren, D. P. (2018). A global analysis of future water deficit based on different allocation mechanisms. Water Resources Research, 54(8), 5803–5824.
- Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., ..., & Wada, Y. (2020). Development of the Community Water Model (CWatM v1. 04)–a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development, 13(7), 3267-3298
- Burke, E. , Zhang, Y., & and Krinner, G. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere, 14(9), 3155–3174.
- Das, S., & Banerjee, S. (2021). Investigation of changes in seasonal streamflow and sediment load in the Subarnarekha-Burhabalang basins using Mann-Kendall and Pettitt tests. Arabian Journal of Geosciences, 14(11), 1-14.
- Douville H., Arias, P., Bellouin, N., Coppola, E., & Jones, R. G. (2021). Climate change 2021: The physical science basis. Contribution of working group14 I to the sixth assessment report of the intergovernmental panel on climate change; technical summary. Cambridge, United Kingdom and New York: Cambridge University Press.
- Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M.,..., & Zolina, O. (2021). Water cycle changes. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.
- Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51–58.
- Gadedjisso-Tossou, A., Adjegan, K. I., & Kablan, A. K. M. (2021). Rainfall and temperature trend analysis by Mann–Kendall test and significance for rainfed cereal yields in Northern Togo. Sci, 3(1), 17.
- Guillaumont, P., & Simonet, C. (2011). Designing an index of structural vulnerability to climate change. Ferdi Working Paper. 40-53. Retrieved from https://ferdi.fr/dl/df-wGxz7S3WC8RfZ82UJVCCwjzw/ferdi-b18-designing-an-index-of-physical-vulnerability-to-climate-change.pdf
- Hanasaki, N., S. Yoshikawa, Y. P., & Kanae, S. (2018). A global hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Sciences, 22(1), 789–817.
- Hanasaki, N., Yoshikawa, S., Pokhrel, Y., & Kanae, S. (2018). A quantitative investigation of the thresholds for two conventional water scarcity indicators using a state‐of‐the‐art global hydrological model with human activities. Water Resources Research, 54(10), 8279-8294.
- https://www.parsi.euronews.com/
- Koutroulis, A. G., Papadimitriou, L. V., Grillakis, M. G., Tsanis, I. K., Warren, R., & Betts, R. A. (2019). Global water availability under high-end climate change: a vulnerability based assessment. Global and Planetary Chang, 175, 52–63.
- Li, Y., Kong, M., Zang, C., & Deng, J. (2023). Spatial and temporal evolution and driving mechanisms of water conservation amount of major ecosystems in typical watersheds in subtropical China. Forests, 14(1), 2-18.
- Müller Schmied, H., Caceres, D., Eisner S., Florke M., Herbert, C., Neimann, Ch., & Doll, P. (2021). The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geoscientific Model Development, 14(2), 1037-1079.
- Müller, H., Schmied, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., …, & Wada, Y. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change, 11(3), 226-233.
- Qin, Y., Mueller, N. D., Siebert, S., Jackson, R. B., AghaKouchak, A., Zimmerman, J. B., & Davis, S. J. (2019). Flexibility and intensity of global water use. Nature Sustainability, 2(6), 515–523.
- Qin, Z., Fu, H., & Chen, X. (2019). A study on altered granite meso-damage mechanisms due to water invasion-water loss cycles. Environmental Earth Sciences, 78(14), 1-10
- Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Regional Environmental Change, 20, 1-12
- Searchinger, T., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Word Resources.
- Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A…, & Zhou, B. (2021). Weather and climate extreme events in a changing climate. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.
- Sullivan, C., & Byambaa. E. (2013). The Climate Vulnerability Index (CVI) and an illustration of its application to Mongolia. UNECE Climate Adaptation Workshop, Geneva.
- The Intergovernmental Panel on Climate Change (IPCC). (2018). Special Report Global Warming of 1.5°C. October 2018. Cambridge, United Kingdom and New York: Cambridge University Press.
- The Intergovernmental Panel on Climate Change (IPCC). (2022). Working Group Report AR6 Climate Change 2022: Impacts, adaptation and vulnerability. Retrieved from https://www.ipcc.ch/assessment-report/ar6/
- The Intergovernmental Panel on Climate Change IPCC. (2021). Climate change 2021: The physical science basis. In Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.
ارسال نظر در مورد این مقاله