بررسی کاربرد GIS برای تخمین فرسایش خاک و بار رسوب با استفاده از مدل RUSLE (مطالعۀ موردی: حوضۀ قلعه چای)

نوع مقاله : علمی- پژوهشی

نویسندگان

1 دانشگاه آزاد اسلامی واحد لارستان

2 دانشگاه رازی

چکیده

اهداف: در این پژوهش به بررسی میزان فرسایش خاک و بار رسوب حوضۀ آبریز قلعه-چای با استفاده از مدل تجربی RUSLE در محیط (GIS) پرداخته شده است.
روش: برای دست‌یافتن به هدف تحقیق، از مدل تجربی RUSLE در محیط GIS که شامل عامل فرسایندگی باران، عامل فرسایش‌پذیری خاک، عامل توپوگرافی و پوشش گیاهی است، استفاده شد و اسناد و مدارک مختلفی، ازجمله نقشه‌های توپوگرافی، زمین-شناسی، خاک‌شناسی، کاربری اراضی، پوشش گیاهی، آمارهای مختلف مربوط به ایستگاه-های باران‌سنجی و مدل ارتفاعی رقومی به‌عنوان ابزار تحقیق مورداستفاده قرار گرفت.
یافته‌ها/ نتایج: نتایج و رسوب کلّ برآورد شده در روش USDA، قابلیت تلفیق مدل RUSLE و GIS را در برآورد میزان فرسایش و بارِ رسوب نشان می‌دهد.
نتیجه‌گیری: بررسی نقشۀ خطر فرسایش خاک نشان می‌دهد که میزان خطر فرسایش خاک در سطح دشت، از صفر تا 225/2 برحسب تن در هکتار در سال متغیّر است و منطقۀ موردمطالعه، جزو طبقۀ فرسایشی خیلی کم تا کم قرار داشت و حداکثر بار رسوب 64/0 تن در هکتار در سال برآورد شد.

کلیدواژه‌ها


عنوان مقاله [English]

Examining the Usage of GIS in Estimating Soil Erosion and Sediment Yield Using RUSLE Model (Case study: Ghale chay Basin, Iran)

نویسندگان [English]

  • Ahmad Ansari Lari 1
  • Maryam Ansari 2
1 Islamic Azad University, Larestan Branch
2 Razi University
چکیده [English]

Extended Abstract
1. Introduction
Nowadays you can rarely find areas on the earth surface which are not exposed to degradation and erosion and this is mainly due to population growth and excessive use of the land. The severity and extensity of erosion was not the same in different times and places, and it is related to the natural conditions, topography, soil characteristics, and status of land use. The phenomenon of soil erosion and sediment yield has created many problems in human society; accordingly, soil erosion is one of the most serious problems in developing countries and many developed countries now. Although it is not possible to stop the erosion geology, however, prevention and control of soil erosion is a basic need in the basins within the framework of utilization projects of water, soil, and watershed. One of the problems of erosion and sediment studies is the shortage of necessary data and information. This problem was more acute in developing countries and our country, Iran, is one of those countries that faces with this problem.
2. Theoretical Framework
Ghale chay basin is located at the altitude of 37 ° 27' 44 ʺ to 37° 42' 25 ʺ N and longitude of 45° 54' 36 ʺ to 46° 20' 40 ʺ E. Ghale chay basin have caused replacement of various human centers due to its coverage with Ghale chay river alluvium, suitable soil, relatively enough water and appropriate environmental conditions that makes it inevitable to investigate the status of erosion and to prepare erosion intensity map in this region. Due to the complexity of the processes, lack of appropriate statistics and measurement stations, and also to facilitate the work, most of the time erosion and sedimentation studies are done using experimental methods in Iran. Therefore the purpose of this study is soil erosion and sediment yield modeling using RUSLE model and Geographic Information System (GIS) and also identification of erosion susceptible areas to perform soil and water conservation operations in Ghale chay basin.


3. Methodology
In this study, the amount of soil erosion has been studied in Ghale chay basin. To this purpose, the Revised Universal Soil Loss Equation (RUSLE) model has been adopted in Geographic Information System (GIS) technique framework that includes the R, K, LS, C, and P factors. To achieve the target, various documents, such as topographic maps with the scale of 1:50,000 including Hargalan sheet number 5265 III, Shiramin sheet number 5165II, Maragheh sheet number 5264IV, and Ajab Shir sheet number 5164I to perform analysis of topography, check slope and hydrographic network, elevation and quantitative analysis; geological maps of Azar Shahr, Osku, Ajab Shir and Maragheh with a scale of 1:100,000 for the stratigraphy, lithology, the nature of materials, geological structure, development stages etc., and also the rainfall data from weather stations around the basin and Digital Elevation Model (DEM) have been used. Average annual soil loss was calculated by multiplying the rainfall-runoff erosivity factor (R), soil erodibility factor (K), slope length and steepness factor (LS), cover management factor (C) and support practice factor (P) using intended model equation in Raster calculator extension in Arc GIS10.2.
4. Results and Discussion
Ghale chay basin has highly variable topography. This is determined with the range of zero to 10.32 of LS factor. Examining Rain Erosion (R) factor map in the basin indicated that this factor is variable from 3 to 3.71 MJ mm ha. The results also indicated that erosion in the northeast and southwest region under study has a decreasing and increasing trend, respectively. To prepare the C factor map land use and vegetation maps were used. This factor is variable from 0.04 to 0.45 that represents fairly well vegetation in the basin. To calculate the K factor the necessary information of geological map with the scale of 1: 100000 and soil layer were used. The average value of K factor is variable in the basin from 0.1 to 0.5.
5. Conclusion and suggestions
Evaluation of soil erosion risk map shows that amount of risk soil erosion is variable in the plain from 0 to 2.225 tons per hectare per year. According to this map, the studied area was considered as a very low to low sedimentation class. The calculation results of sediment delivery ratio methods show that in the studied area the ratio of sediment delivery is variable from 0.08 to 0.29 and maximum sediment yield is variable from 0.19 to 0.64 tons per hectare per year. Finally, comparing the estimated total deposition in USDA method with the amount of the obtained in EPM model from the research study of Roostaei, Rasooli, and Ahmad Zadeh, shows the ability to integrate RUSLE and GIS models in estimating soil erosion and sediment load.

کلیدواژه‌ها [English]

  • Soil Erosion
  • RUSLE
  • GIS
  • Ghale chay basin
آرخی، ص؛ نیازی، ی. (1389). بررسی کاربرد(GIS ) و (RS) برای تخمین فرسایش خاک و بار رسوب با استفاده از مدل(RUSLE) (مطالعۀ موردی: حوضۀ بالادست سدّ ایلام). مجلّۀ
پژوهش‌های حفاظت آب و خاک، 17(2)، 1ـ27
احمدی، ح. (1388). ژئومورفولوژی کاربردی. چاپ ششم. انتشارات دانشگاه تهران
خیّام، م؛ غنمی جابر، م؛ و صمدزاده، رسول. (1392). مقایسۀ کارایی مدل های MPSIAC و EPM در برآورد فرسایش و رسوب زایی حوضۀ آبخیز سقزچی چای نمین. دو فصلنامۀ ژئومورفولوژی کاربردی ایران، 1(1)، 1ـ13
رحیمی، خ؛ مزبانی، م. (1392). ارزیابی تغییرات فرسایش حوزۀ آبخیز سیوند طی سال‌های 1998 تا 2009 با استفاده از مدل RUSLE . فصلنامۀ پژوهش‌های فرسایش محیطی، 3(9)، 1ـ18
رخبین، م.؛ نوحه‌گر، ا.؛ کمالی، ع.؛ و حبیب‌اللهیان، م. (1393). برآورد میزان فرسایش و تولید رسوب در حوضۀ آبخیز لاورفین (استان هرمزگان) با استفاده از سنجش از دور (RS)، سیستم اطّلاعات جغرافیایی (GIS) و مدل تجربی (RUSLE)، فصلنامۀ تحقیقات جغرافیایی، 29 (3)، 89ـ104
رضائی، پ؛ فریدی، پ؛ قربانی، م؛ و کاظمی، م. (1393). برآورد فرسایش خاک با استفاده از مدل RUSLE و شناسایی مؤثّرترین عامل آن در حوضۀ آبخیز گابریک ـ جنوب خاوری استان هرمزگان. پژوهش‌های ژئومورفولوژی کمی، 3(1)، 97ـ113
روستایی، شهرام؛ رسولی، ع. ا.؛ و احمدزاده، ح. (1389). مدل‌سازی فرسایش و رسوب حوضۀ آبریز قلعه‌چای عجب‌شیر با استفاده از داده‌های ماهواره‌ای در محیط GIS. جغرافیا و توسعه. 8(18)، 159ـ178
زندی، ج.؛ سلیمانی، ک.؛ و حبیب‌نژاد روشن، م. (1392). اولویت‌بندی نواحی کنترل فرسایش خاک با استفاده از تکنیک‌های ارزیابی چندمعیاره و GIS. جغرافیا و توسعه، 11(31)، 93ـ106
شکوری، ب. (1374). فرسایش خاک و پیامدهای آن در اکوسیستم. مجلّۀ آب، خاک و ماشین، 6 (2)، 55ـ 64
صالحی، م.؛ اسفندیارپور بروجنی، ع.؛ مهاجر، ر.؛ و باقری بداغ‌آبادی، م. (1394). حفاظت آب و خاک تکمیلی. چاپ دوم. انتشارات دانشگاه پیام نور
قضاوتی، ر.؛ ولی، ع.؛ مقامی، ی.؛ عبدی، ژ.؛ و شرفی، س. (1391). مقایسۀ مدل‌های PSIAC EPM, MPSIAC در برآورد فرسایش و رسوب با استفاده از GIS. جغرافیا و توسعه، 10 (27)، 117ـ126
واعظی، ع.؛ بهرامی، ح.؛ صادقی، ح. ر.؛ و مهدیان، م. ح. (1389). برآورد عامل فرسایش‌پذیری K با استفاده از مدل RUSLE در بخشی از خاک‌های ناحیۀ نیمه‌خشک در شمال‌غربی ایران. مجلّۀ پژوهش‌های حفاظت آب و خاک، 17(13). 105ـ 124
Bonilla, C., Jose, A., Reyes, L., & Magri, A. (2010). Water erosion prediction using the revised universal soil loss equation (RUSLE) in a GIS framework, central chile. Chilean Journal of Agricultural Research, 70(1), 159-169
Carvalho, D. F. D., Durigon, V. L., Antunes, M. A. H., Almeida, W. S. D., & Oliveira, P. T. S. D. (2014). Predicting soil erosion using Rusle and NDVI time series from TM Landsat 5. Pesquisa Agropecuaria Brasileira, 49(3), 215-224
Farhan, Y., Dalal, Z., & Farhan, I. (2013). Spatial estimation of soil erosion risk using RUSLE approach, RS, and GIS techniques: A case study of Kufranja watershed, northern Jordan. Journal of Water Resource and Protection, 5(12), 1247-1261
Haan, C.T., Barfield, B.J., & Hayes, J.C. (1994). Design hydrology and sedimentology for small catchments. San Diego: Academic Press
Li, H., Xiaoling, H., Lim, K. J., & Sagong, M. (2010). Assessment of soil erosion and sediment yield in Liao watershed, Jiangxi Province, China, Using USLE, GIS, and RS. Journal of Earth Science, 21(6), 941–95
Lim, K. J., Sagong, M., Engel, B. A., Tang, Z., Choi, J., & Kim, K. S. (2005). GIS-based sediment assessment tool. Catena, 64(1), 61-80
Marker, M. (2006). Assessment of land degradation susceptibility by scenario analysis: a case study in Southern Tuscany, Italy. Geomorphology, 93(1-2), 120-129
Renard, K. G., & Freidmund, J. R.) 1994(. Using monthly precipitation data to estimate the R-factor in the RUSLE, Journal of Hydrology, 157(1-4), 287-306
Shrestha, D. (2001). Soil erosion modeling using remote sensing and GIS: A case study of Jhikhu Khola watershed, Nepal (Unpublished master's thesis). Andhra University, Visakhapatnam, Andhra Pradesh, India
Tiwari, A.K., Riss, L.M., & Nearing, M.A. (2000). Evaluation of WEPP and its comparison with USLE and RUSLE. American Society of Agriculture Engineers, 43(5), 1129-1135
Wang, G., Gertner, G., Fang, S., & Anderson, A.B. (2003). Mapping multiple variables for predicting soil loss by geostatistical methods with TM images and a slope map. Photogrammetric Engineering and Remote Sensing, 69(8), 889-898
Wischmeier, W.H., & Smith, D.D.)1978(. Predicting rainfall erosion losses: A guide to conservation planning. Agriculture Handbook. No. 537. Washington DC: US Department of Agriculture