Document Type : Research-Case Study

Authors

1 PhD student in Climatology, Department of Geography, Rasht Branch, Islamic Azad University, Rasht, Iran

2 Associate Professor of Climatology, Department of Geography, Rasht Branch, Islamic Azad University, Rasht, Iran

3 Associate Professor of Political Geography, Department of Geography, Rasht Branch, Islamic Azad University, Rasht, Iran

Abstract

Climate is one of the environmental factors that plays a seminal role in human activities including tourism. In this research, the human-biometeorological climatic conditions of Ardabil province have been investigated using physiological equivalent temperature (PET) based on body-atmosphere energy balance and multivariate regression. The data was collected from the National Meteorological Organization for 8 synoptic stations over 30 years (1991 to 2020). The results suggest that out of 9 climate classes of PET index, only 5 classes of “very cold, cold, relatively cool, cool and comfortable” can be found in this region and 4 classes of “relatively hot, hot, hot and very hot” do not exist in this province. In this regard, it turned out that very cold conditions prevail over the entire province in 5 months of the cold season, i.e., January, February, March, November and December, and the spatial distribution of these conditions is fully homogenous. This is relatively heterogeneous in the summer and the climatic conditions of this area are more variable in the hot season of the year. In general, in June, July and August, ideal conditions prevail in parts of this province. As such, the it was found that the major controlling factor of comfortable climatic conditions among longitude, latitude and altitude was altitude, so that there is a strong inverse relationship between altitude and PET index in 12 months of the year at a significant level of α=0.05 and α=0.01. The multivariate regression relationship of longitude, latitude and altitude with the PET indicate that Adj.R2 value of PET from January to December for the reference period is 0.713, 0.820, 0.783, 0.807, 0.807, 0.559, 0.841, 0.693, 0.745, 0.731, 0.824 and 0.662. The highest variations in the dependent variable were observed in the regression model. In this model, altitude has an inverse relationship with PET so that its value declines as altitude increases. This is true for two variables of latitude and longitude, but the effect of longitude is less substantial than that of latitude, both of which are eclipsed by altitude.   
 
 

Keywords

Main Subjects

  1. تولایی، س. (1393). مروری بر صنعت گردشگری (چاپ اول). تهران: انتشاارت دانشگاه خوارزمی.
  2. حیدری، ش. (1388). دمای آسایش حرارتی مردم شهر تهران. هنرهای زیبا، 38، 5-14.
  3. خداشناس، س. ر.، قهرمان، ب.، داوری، ک.، و ناظریان، ح. (1387). ارائه مدل‌های رگرسیونی چند متغیره برآورد رسوب در حوضه­های شمال استان خراسان. مجله آب و خاک، 22(2)، 67-76.
  4. خوشدل، ن.، رضایی، پ.، متولی، ص.، و جانباز قبادی، غ. ر. (1399). تبیین اقلیم گردشگری شرق استان گیلان و طبقه­بندی مکانی آن به روش آماری چند متغیره. فصلنامه علمی مطالعات برنامه­ریزی سکونتگاه­های انسانی، 15(4)، 1119-1136.
  5. داوودی، م.، نظرپور، ع.، و مشیری­نژاد، ف. (1399). آسایش سنجی اقلیم-گردشگری با استفاده از شاخص­های (TCI، SET، PET، PMV) (مطالعه موردی: استان گیلان). اندیشه جغرافیایی، 12(21)، 26-46.
  6. رضایی، ا.، رحیمی، م.، و محمودیان عطاآبادی، ح. (1401). تعیین زمان مناسب گردشگری در بندر چابهار بر اساس شرایط آب و هوایی. مجله گردشگری فرهنگ، 3(1)، 5-16.
  7. میرهاشمی، ح.، شرفی، س.، و آرین­تبار، ح. (1400). تعیین تقویم اقلیم گردشگری و آزمون روند تغییرات بر پایه مدل­های RayManو ITA  (مطالعه موردی: شهرستان پلدختر). فصلنامه مطالعات جغرافیایی مناطق کوهستانی، 2(6)، 67-82.
  8. نوری، ر.،اشرفی، خ.، و اژدرپور، ا. (1387). مقایسه کاربرد روش‌های شبکه عصبی مصنوعی و رگرسیون خطی چندمتغیره براساس تحلیل ‌مؤلفه‌های اصلی برای پیش‌بینی غلظت میانگین روزانه کربن‌مونوکسید: بررسی موردی شهر تهران. فیزیک زمین و فضا، 34(1)، 135-152.

 

  1. Abreu-Harbich, L. V., Labaki, L. C., & Matzarakis, A. (2014). Thermal bioclimate as a factor in urban and architectural planning in tropical climates-The case of Campinas, Brazil. Urban Ecosystems, 17(2), 489-500.
  2. Agnew, M. D., & Palutikof, J. P. (2001). Climate impacts on the demand for tourism. Paper presented at the International Society of Biometeorology Proceedings of the First International Workshop on Climate, Tourism and Recreation. Retrieved from http://www.mif.unifreiburg.de/isb/ws/report.htm
  3. Ateş, O., Kiper, T., & Uzun, O. (2023). The relationship between tourism planning and bioclimatic comfort in rural areas: The case of Kofçaz/Kirklareli/Türkiye. Turkish Journal of Agriculture - Food Science and Technology, 11(4), 883-896.
  4. Balan, B., Mohaghegh, S., & Ameri, S. (1995). State-Of-The-Art in permeability determination from well log data: Part 1- A comparative study, model development. Paper presented at the SPE Eastern Regional Meeting, Morgantown, West Virginia.
  5. de Freitas, C. R. (2003). Tourism climatology: Evaluating environmental information for decision making and business planning in the recreation and tourism sector. International Journal of Biometeorology, 48, 45-54.
  6. Esmaeili, A., Zeidi, Z., & Bakhti, S. (2015). Determining an appropriate tourism schedule in Gorgan using physiologic equivalent temperature (PET). Paper presented at the International conference on sustainable development, strategies and challenges with a focus on Agriculture, Natural Resources, Environment and Tourism, Tabriz, Iran.
  7. Farajzadeh, H., & Matzarakis, A. (2009). Quantification of climate for tourism in the northwest of Iran. Meteorological Applications, 16, 545–555.
  8. Farajzadeh, H., & Matzarakis, A. (2012). Evaluation of thermal comfort conditions in Ourmieh Lake, Iran. Theoretical and Applied Climatology, 107, 451–459.
  9. Freitas, C. R. D., Scott, D., & McBoyle, G. (2008). A second generation climate index for tourism (CIT): Specification and verification. International Journal of Biometeorology, 52, 399–407.
  10. Hamad, T. A., & Oguz, H. (2020). Determining thermal comfort zones for outdoor recreation planning: A case study of Erbil–Iraq. Turkish Journal of Forest Science, 4(1), 133-145.
  11. Hanafi, A., & Atashgahi, H. (2017). Determination of thermal bioclimatic conditions for tourists in West and North West of Iran using PET. International Journal of Environment, Agriculture and Biotechnology (IJEAB), 2(1), 61-71.
  12. Höppe, P. (2002). Different aspects of assessing indoor and outdoor thermal comfort. Energy and Buildings, 34, 661-665.
  13. Hoppe, P. (1984). Die Energiebilanz des Menschen. Wiss Mittl Meteorol Inst Uni München 49.
  14. Hoppe, P. (1999). The physiological equivalent temperature-a universal index for the biometeorological assessment of the thermal environment. International Journal of Biometeorology, 43, 71–75.
  15. Kakvan, R., Alijani B., & Saliqeh, M. (2020). Evaluation of tourism climate conditions at three stations of Noshahr, Ramsar and Rasht using the physiological equivalent temperature and average predicted polling index. REGET, Santa Maria, 24(13), 1-36.
  16. Lin, T. P., & Matzarakis, A. (2008). Tourism climate and thermal comfort in Sun Moon Lake, Taiwan. International Journal of Biometeorology, 52, 281-290.
  17. Maddison, D. (2001). In search of warmer climates? The impact of climate change on flows of British tourists. Climatic Change, 49(1/2), 193–208.
  18. Malinović‑Milićević, S., Petrović, M. D., & Radovanović, M. M. (2023). Evaluation of outdoor thermal comfort conditions: Evidence from the Serbian major ski resort over the last 30 years. International Journal of Biometeorology, 67, 807–819.
  19. Matzarakis, A., Mayer, H., & Iziomon, M. G. (1999). Applications of a universal thermal index: Physiological equivalent temperature. International Journal of Biometeorology, 43, 76–84.
  20. Matzarakis, A., Rutz, F., & Mayer, H. (2007). Modelling radiation fluxes in simple and complex environments–application of the RayMan model. International Journal of Biometeorology, 51, 323–334.
  21. Spagnolo, J., & de Dear, R. (2000). Field study to calibrate an outdoor thermal comfort index. In R. de Dear, J. Kalma, T. Oke, & A. Auliciems (Eds.), Biometeorology and urban climatology at the turn of the millennium (pp. 315-320). Geneva: World Meteorological Organization.
  22. Santos Nouri, A., Charalampopoulos I., & Matzarakis A. (2022). The application of the physiologically equivalent temperature to determine impacts of locally defined extreme heat events within vulnerable dwellings during the 2020 summer in Ankara. Sustainable Cities and Society, 81(2022), 103833.
  23. Suhada, S. T., Sudiar, N. Y., Rifai, H., & Dwiridal, L. (2023). Thermal comfort index analysis of Padang city coastal tourism area using the Physiological Equivalent Temperature (PET) Method. Journal of Climate Change Society (JCCS), 1(1), 29-40.
  24. Wilis, R., Nugroho, S., Barlian, E., & Syah, N. (2020). Characteristics of Outdoor Thermal Comfort Index (OCTI) at Mandeh tourism site. International Journal of Geomate, 19(73), 250-256.
CAPTCHA Image