Document Type : case study

Authors

1 PhD in Climatology, Departmentof Environment and Urban Services,Mashhad Municipality, Mashhad, Iran

2 MA in Environmental Health, Departmentof Environment and Urban Services,Mashhad Municipality, Mashhad, Iran

Abstract

Nitrogen dioxide is one of the standard pollutants that in addition to adverse health effects, is also a prerequisite for the formation of hazardous atmospheric compounds. Based on 84 monthly maps, which are drawn from the maximum number of air quality stations and the longest possible statistical period, four seasonal maps of NO2 distribution were prepared for Mashhad city. Then, using Getis–Ord-Gi index, the hot spots of this pollutant were identified on seasonal maps. Using hierarchical cluster analysis, homogeneous NO2 areas of Mashhad were identified. According to the results, the spatial pattern of the formation of hotspots is similar in all seasons and covers most of the eastern and northeastern regions of Mashhad. Moreover, in terms of the concentration of pollutants, Mashhad can be divided into three homogeneous zones or areas. Region 1 with moderate concentration covers 24% of the city area in the southern and southwestern of the city. Zone 2 with the lowest concentration that covers 50% of the city area corresponds to the western half of Mashhad and is located in this zone, and finally Zone 3 with high concentration, mainly includes the eastern and northeastern parts of Mashhad.High population density compared to other regions, lack of infrastructure, urban transport network, old motor vehicles and proximity to the suburbs of production and industrial units may be reasons for high concentration of NO2 formation in this region. The results of this study can be used as a source of specialized information for developing programs for monitoring, reducing and controling NO2 pollutants in Mashhad.
 
 

Keywords

Main Subjects

  1. اسماعیلی، ر. (1397). نواحی همگن آلودگی هوای شهر مشهد. مجله مخاطرات محیط طبیعی، 7(16)، 240-227.
  2. اسماعیلی، ­­­­ر.، و امینی، ف. (1399). شناسایی نقاط داغ غلظت ذرات معلق (5) هوای شهر مشهد. نشریه پژوهش‌های اقلیم‌شناسی، 11(44)، 78-63.
  3. بهاری،­ ر.، عباسپور، ر.، و پهلوانی، پ. (1394). پهنه‌بندی آلودگی ذرات معلق با استفاده از مدل‌های آماری محلی در GIS (مطالعه موردی، شهر تهران). نشریه علوم و فنون نقشه‌برداری، (3)، 173-165.
  4. تقوی، ه. (1391). توزیع زمانی و­ مکانی آلاینده­های شاخص آلودگی هوای شهر مشهد و عوامل موثر بر آن (پایان‌نامه منتشرنشده کارشناسی‌ارشد)، دانشگاه فردوسی مشهد، ایران.
  5. جولایی، ف.، پیروی، ر.، اسماعیلی، ح.، کتابی، د.، و متعلمی، آ. ( 1396). بررسی تغییرات غلظت مونوکسید کربن و PM5 در شهر مشهد در سال 1395. نشریه تحقیقات سلامت در جامعه، 3(3)، 45-34.
  6. خرسندی، ح.، امینی تپوک، ف.، کارگر، ح.، و موسوی مغانجوقی، س. (1391). بررسی کیفیت بهداشتی هوای شهر ارومیه براساس شاخص AQI. مجله پزشکی ارومیه، 23(7)، 775-767.
  7. خسروی، ی.، و بحری، ع. (1397). استفاده از تکنیک‌های آمار فضایی جهت بررسی تغییرات زمانی-مکانی غلظت کلروفیل a در خلیج فارس. مجله علمی- پژوهشی زیست دریا، 10(37)، 46-33.
  8. علیجانی، ب. (1394). تحلیل فضایی. نشریه تحلیل فضایی مخاطرات محیطی، 2(3)، 14-1.
  9. مرکز آمار ایران. (1397). سالنامه آماری کشور 1395. دفتر ریاست روابط عمومی و همکاریهای بین الملل مرکز آمار، تهران.
  10. مرکز پایش آلاینده­های زیست‌محیطی شهر مشهد. گزارش‌های سالانه 1396، 1397 و 1398. بازیابی از https://epmc.mashhad.ir
  11. نادیان، م.، میرزایی، ر.، و سلطانی محمدی، س. (1397). کاربرد شاخص خودهمبستگی فضایی موران در تحلیل فضایی-زمانی آلاینده PM5 (مطالعه موردی: شهر تهران). مجله مهندسی بهداشت محیط، 5(3)، 213-197.

 

  1. AEA Technology Environment. (2005). Damages per tone emission of PM2.5, NH3, SO2, NOx and VOCs from each EU25 member State (excluding Cyprus) and surrounding seas. In Service contract for carrying out cost-benefit analysis of air quality related issues, in particular in the clean air for Europe (CAFE) programme (pp. 4-20). Oxon, UK: AEA Technology Environment.
  2. Chu, H. J., Huang, B., & Lin, CY. (2015). Modeling the spatio-temporal heterogeneity in the PM10-PM2.5 relationships. Atmospheric Environment, (102), 176-182.
  3. Clean Air Alliance of China (CAAC). (2013). State council air pollution prevention and control action plan, issue II (English translation). Retrieved October 8, 2015, from http://en.cleanairchina.org/product/6346.html
  4. Kim, KH, Kabir, E, & Kabir, S. (2015). A review on the human health impact of airborne particulate matter. Environ International, (74), 136-43.
  5. Ku, C. (2020). Exploring the spatial and temporal relationship between air quality and urban land-use patterns based on an integrated method. Sustainability, 12(2964), 1-16.
  6. Li, Ch., Dai, Zh., Yang, L., & Ma, Zh. (2019). Spatiotemporal characteristics of air quality across Weifang from 2014–2018. International Journal of Environment Research Public Health, 16(3122), 2-15.
  7. Nanda, Ch., Kant, Y., Gupta, A. & Mitra, D. (2018). Spatio-temporal distribution of pollutant trace gases during Diwali over India. Annals of the Photogrammetry, Remote Sensing and Spatial Information Sciences, (5), 339-350.
  8. Nunez-Alonso, D., Vicente, L., Manzoor, S. & Caceres, J. (2019). Statistical tools for air pollution assessment: multivariate and spatial analysis studies in the Madrid region. Journal of Analytical in Chemistry, 2019, 1-9.
  9. Pu, H., Luo, K., Wang, P., Wang, S., & Kang, S. (2017). Spatial variation of air quality index and urban driving factors Linkage: Evidence from Chinese cities. Environmental Science Pollution Research, (24), 4457-4468.
  10. Ryu, , Park, C., & Jeon, S. W. (2019). Mapping and statistical analysis of NO2 concentration for local government air quality regulation. Sustainability, (11), 1-18.
  11. US EPA. (2014). national­­­ ambient­ air quality standards (NAAQS). Retrieved from http://epa.gov/air/criteria.html.
  12. Varshney, C. K., & Singh, A.P. (2003). Passive samplers for NOx monitoring: A critical review. Environmentalist, (23), 127–136.
  13. Wang , Wang J., Tan X., & Fang, C. (2020). Analysis of NOx pollution characteristics in the atmospheric environment in Changchun City. Atmosphere, (11), 30. 1-12.
  14. Wang, Z., & Fang, C. (2016). Spatial-temporal characteristics and determinants of PM2.5 in the Bohai Rim Urban Agglomeration. Chemosphere, (148), 148-162.
  15. Zhang, Q., Geng, G. N., & Wang, S. W. (2012). Satellite remote sensing of changes in NOx emissions over China during 1996–2010. China Science Bulletin, (57), 2857–2864.
  16. Zhang, Q., Streets, D. G., & He, K. (2007). Nox emission trends for China, 1995–2004: The view from the ground and the view from space. Journal of Geophysical Research: Atmospheres, 112(18), 1-18.
CAPTCHA Image