Document Type : case study

Authors

1 PhD Candidate in Meteorology, Atmospheric Science and Meteorological Research Center, Tehran, Iran

2 Associate Professor, Department of Weather Hazards Warning, Atmospheric Science and Meteorological Research Center, Tehran, Iran

3 Assistant Professor, Water Engineering Department, Shahrekord University, Shahrekord, Iran

4 Assistant Professor, Department of Atmospheric Prospecting, Atmospheric Science and Meteorological Research Center, Tehran, Iran

5 Professor of Space Physics, Institute of Geophysics, University of Tehran, Tehran, Iran

Abstract

In the 1987–2018 statistical period, unprecedented rainfall amounts of about 320mm in 72 hours were recorded at Ilam in October 2015. This heavy rainfall was studied from the perspective of teleconnection, the flux of the Rossby wave activity and synoptic-dynamical analysis. To investigate meteorological quantities, the ERA5 data with horizontal resolution of 0.25 degrees were used. To determine the predictability of the above precipitation, the WRF model was run for three nested domains with respectively 36, 12 and 4 km horizontal resolutions and then simulated rainfall values were compared with the observations. The results show that based on the flux of the Rossby wave activity, the system is received Rossby-wave activity mainly from the middle latitudes. Moreover, the combination of the strong Sudanese and Mediterranean low-pressure systems, the impact of the Chappala tropical storm as a source of injecting moisture into the region, the blocking created in the middle troposphere, the ridge formed in the southern latitudes of Iran, and the impact of the Zagros Mountains are the main factors affecting this heavy rainfall event. The results of teleconnection study showed that the moderate to strong descending branch of the El Nino prevented the eastward movement of the phase 2 and strong MJO convection. The MJO phase 2 activity has extended and strengthened the ridge in the southern latitudes of Iran, leading to several days of system persistence and continuous rainfall in the study area. Further, the positive NAO phase has led to strong pressure gradients and cyclonic reinforcement in the eastern Mediterranean. The simulation results of WRF model also showed correlation coefficients of 88% with 95% significance level. The 8% error rate between simulation and observation precipitation showed the remarkable model's ability to predict this rainfall.

Keywords

  1. اسعدی، ع.، احمدی گیوی، ف.، قادر، س.، و محب‌الحجه، ع. ر. (1390). بررسی دینامیک مسیر توفان مدیترانه از دیدگاه شار فعالیت موج راسبی. مجلۀ ژئوفیزیک ایران، 4، 45-31.
  2. بهرامی، ف.، رنجبر سعادت‌آبادی، ع.، مشکوتی، ا. ح.، و کمالی، غ. ع. (1397). مطالعۀ توفان‌های اقیانوس اطلس و دریای مدیترانه بر مبنای شار فعالیت موج راسبی در دوره‌های خشک و تر بهاره 1387 و 1397 در ایران. نشریۀ هواشناسی و علوم جو، 1، 20-1.
  3. رضائیان، م.، محب‌الحجه، ع. ر.، احمدی گیوی، ف.، و نصر اصفهانی، م. ع. (1392). تحلیل آماری-دینامیکی رابطۀ بین مسیر توفان مدیترانه و نوسان اطلس شمالی بر مبنای فرایافت فعالیت موج. مجلۀ فیزیک زمین و فضا، 2، 152-139.
  4. غلامی رستم، م.، ساداتی‌نژاد، س. ج.، و ملکیان، آ. (1397). بررسی مطالعات انجام‌شده دربارۀ تأثیر الگوهای دورپیوندی بر اقلیم ایران (1378-1393). مجلۀ علمی ترویجی نیوار، (102-103)، 78-73.
  5. فرج­زاده اصل، م.، احمدی، م.، علیجانی، ب.، قویدل رحیمی، ی.، مفیدی، ع.، و بابائیان، ا. (1392). بررسی وردایی الگوهای پیوند از دور و اثر آن‌ها بر بارش ایران. نشریۀ پژوهش­های اقلیم شناسی، (15-16)، 31-45.
  6. کریم­خانی، م.، جمشیدی خزلی، ت.، آزادی، م.، و فتاحی، ا. (1396). اثر تفکیک افقی مدل WRF بر روی بارش در حوضه­های آبریز کرخه و کارون. مجلۀ اکوبیولوژی تالاب، 34، 74-55.

 

7.    Ahmadi-Givi, F., Nasr-Esfahany, M. A., & Mohebalhojeh, A. R. (2013). Interaction of North Atlantic baroclinic wave packets and the Mediterranean storm track. Quarterly Journal of the Royal Meteorological Society, 140, 754 - 765.

  1. Alpert, P., Ziv, B., & Shafir, H. (2004). Semi‐objective classification for daily synoptic systems: Application to the eastern Mediterranean climate change. International Journal of Climatology, 24(8), 1001-1011.
  2. Barnston, A. G., & Livezey, R. E. (1987). Classification, seasonality and persistence of low-frequency atmospheric circulation patterns. Monthly Weather Review, 115(6), 1083-1126.
  3. Chang, E. K. M. (1993). Downstream development of baroclinic waves as inferred from regression analysis. Journal of the Atmospheric Sciences, 50, 2038-2053.
  4. Corona, R., & Montaldo, N. (2017). On the role of NAO-driven interannual variability in rainfall seasonality on water resources and hydrologic design in a typical mediterranean basin. Journal of Hydrometeorology, 19, 485-498.
  5. Danielson, R. E., Gyakum, J. R., & Straub, D. N. (2006). A case study of downstream baroclinic development over the North Pacific Ocean. Part II: diagnoses of eddy energy and wave activity. Monthly Weather Review, 134, 1549-1567.
  6. Esler, J. G., & Haynes, P. H. (1999). Baroclinic wave breaking and internal variability of the tropospheric circulation. Journal of the Atmospheric Sciences, 56, 4014-4031.
  7. Ferranti, L., Palmer, T. N., Molteni, F., & Klinker, E. (1990). Tropical-extratropical interaction associated with the 30–60-day oscillation and its impact on medium and extended range prediction. Journal of the Atmospheric Sciences, 47(18), 2177-2199.
  8. Flocas, H. A., Simmonds, I., Kouroutzoglo, J., & Keay, K. (2010). On cyclonic tracks over the eastern Mediterranean. Journal of Climate, 23(19), 5243-5257.
  9. Higgins, R. W., & Mo, K. C. (1997). Persistent North Pacific circulation anomalies and the tropical intraseasonal oscillation. Journal of Climate, 10(2), 223-244.
  10. Hurrell, J. W. (1995). Decadal trends in the North Atlantic Oscillation: regional temperatures and precipitation. Science, 269, 676-679.
  11. Hurrell, J. W., & van Loon, H. (1997). Decadal variations in climate associated with the North Atlantic Oscillation. Climatic Change, 36, 301-326.
  12. Kamimera, H., Mori, S., Yamanaka, M. D., & Syamsudin, F. (2012). Modulation of diurnal rainfall cycle by the madden−julian oscillation based on one-year continuous observations with a meteorological radar in west sumatera. Scientific Online Letters On The Atmosphere, 8, 111-114.
  13. Knutson, T. R., & Weickmann, K. M. (1987). 30–60 day atmospheric oscillations: Composite life cycles of convection and circulation anomalies. Monthly Weather Review, 115(7), 1407-1436.
  14. Lau, K. M., & Phillips, T. J. (1986). Coherent Fluctuations of Fxtratropical Geopotential Height and Tropical Convection in Intraseasonal Time Scales. Journal of the Atmospheric Sciences, 43(11), 1164-1181.
  15. Madden, R. A., & Julian, P. R. (1971). Detection of a 40-50-day oscillation in the zonal wind in the tropical Pacific. Journal of the Atmospheric Sciences, 28(5), 702-708.
  16. Maheras, P., Flocas, H. A., Patrikas, I., & Anagnostopoulou, C. H. R. (2001). A 40-year objective climatology of surface cyclones in the Mediterranean region: spatial and temporal distribution. International Journal of Climatology, 21(1), 109-130.
  17. Nasr-Esfahany, M. A., Ahmadi-Givi, F., & Mohebalhojeh, A. R. (2011). An energetic view of the relation between the Mediterranean storm track and the North Atlantic Oscillation. Quarterly Journal of the Royal Meteorological Society, 137, 749-756.
  18. Nasuno, T. (2019). Moisture transport over the Western maritime continent during the 2015 and 2017 YMC Sumatra campaigns in global cloud-system-resolving simulations. Scientific Online Letters On The Atmosphere, 15, 99-106.
  19. Nazemosadat, J., & Ghasemi, A. R. (2004). Quantifying the ENSO-related shifts in the intensity and probability of drought and wet periods in Iran. Journal of Climate, 17, 4005-4018.
  20. Nissen, K., Leckebusch, G. C., Pinto, J. G., Ulbrich, S., & Ulbrich, U. (2010). Cyclones causing wind storms in the Mediterranean: Characteristics, trends and links to large-scale patterns. Natural Hazards and Earth System Science, 10(7), 1379-1391.
  21. Orlanski, I., & Katzfey, J. J. (1991). The life cycle of a cyclone wave in the southern hemisphere. Journal of the Atmospheric Sciences, 48, 1972-1998.
  22. Orlanski, I., & Sheldon, J. P. (1993). A case of downstream baroclinic development over western North America. Monthly Weather Review, 121, 2929-2950.

30.               Pagano, T. C., Mahani, S. H., Nazemosadat, M. J., & Sorooshian, S. (2003). Review of Middle Eastern hydroclimatology and seasonal teleconnections. Iranian Journal of Science and Technology, 27, 95-109.

  1. Plumb, R. A. (1986). Three-dimensional propagation of transient quasigeostrophic eddies and its relationship with the eddy forcing of the time-mean flow. Journal of the Atmospheric Sciences, 43, 1657-1678.
  2. Rodwell, M. J., Rowell, D. P., & Folland, C. K. (1999). Oceanic forcing of the wintertime North Atlantic Oscillation and European climate. Nature, 398, 320-323.
  3. Shi, J. J., Tao, W. K., Matsui, T., Cifelli, R., Hou, A., Lang, S., …, & Petersen, W. (2010). WRF simulations of the 20-22 January 2007 snow events over Eastern Canada: Comparison with in situ and satellite observations. Journal of Applied Meteorology and Climatology, 49(11), 2246–2266.
  4. Takaya, K., & Nakamura, H. (2000). A formulation of a phase-independent wave activity flux for stationary and migratory quasigeostrophic eddies on a zonally varying basic flow. Journal of the Atmospheric Sciences, 58, 608-627.
  5. Takemi, T., & Unuma, T. (2019). Diagnosing environmental properties of the July 2018 heavy rainfall event in Japan. Scientific Online Letters on the Atmosphere, 15, 60-65.
  6. Tartaglione, C. A., Smith, S. R., & O'Brien, J. J. (2003). ENSO impact on hurricane landfall probabilities for the Caribbean. Journal of Climate, 17, 2925-2931.
  7. Teng, K. C., Malonet, E., & Barnes, E. (2019). The Consistency of MJO teleconnection patterns: An explanation using linear rossby wave theory. Journal of Climate, 32(2), 531-548.
  8. Wallace, J. M., & Gutzler, D. S. (1981). Teleconnections in the geopotential height field during the Northern Hemisphere winter. Monthly Weather Review, 109(4), 784-812.
  9. Wang, Z., & Yang, S. (2018). Teleconnection between summer NAO and East China Rainfall variations: A bridge effect of the Tibetan Plateau. Journal of Climate, 31, 6433-6444.
  10. Wu, P., Arbain, A. A., Mori, S., Hamada, J. I., Hattori, M., Syamsudin, F., & Yamanaka, M. D. (2013). The effects of an active phase of the Madden-Julian Oscillation on the extreme precipitation event over Western Java Island in January 2013. Scientific Online Letters on the Atmosphere, 9, 79-83.
  11. Zhang, P., Wand, B., & Wu, Z. (2019). Weak ElNiño and winter climate in the Mid -to High latitudes of Eurasia. Journal of Climate, 32(2), 405-421.
CAPTCHA Image