Document Type : Research-Case Study

Authors

1 MA, Department of GIS, School of Surveying and Geospatial Information, College of Engineering, University of Tehran, Tehran, Iran

2 Associate Professor in GIS, School of Surveying and Geospatial Engineering, College of Engineering, University of Tehran, Tehran, Iran

3 Associate Professor of Geomatics Engineering, Faculty of Civil Engineering, Shahrood University of Technology, Shahrood, Iran

Abstract

Making a balance between the demand for healthcare services and the response to it requires the operation of new hospitals. But the important problem is finding the optimal for the construction of a hospital. The present research used a mixed method for determining the optimal location for a hospital in District 2 of Tehran. The mixed method is based on the Geospatial Information System (GIS), Best-Worst Method (BWM), and Multi-Criteria Decision-Making Methods, WASPAS, and TOPSIS. Fewer pairwise comparisons in the weighting process of the proposed method have increased the accuracy and reliability of decision-making results. The combination of spatial modeling and ranking has also reduced the search space for suitable places to build a hospital. For this purpose, after determining the appropriate criteria, the weighting process was carried out with BWM, and the spatial layer of each criterion was prepared using GIS. Based on the weighting results, the criteria of distance from existing hospitals and distance from healthcare centers have had the highest and lowest weight, respectively. In the next step, the land suitability map was prepared by combining the spatial layers. Almost 88% of the spatial modeling results corresponded with the realities of the region, and the western half, especially the southwestern part, for the construction of a new hospital, had a higher proportion than other parts. Finally, sites number 2, 5, and 8 among 11 candidate sites were determined as the most optimal places for the construction of a new hospital in the studied area. It is suggested that one or more hospitals should be built in the designated optimal sites in accordance with the population living in areas without optimal access to hospital facilities so that in addition to improving health spatial equity, the cost of citizens’ access to hospitals could be reduced.
 
 
 

Keywords

Main Subjects

  1. اصغری­زاده، ع.، و محمدی بالانی، ع. (1396). تکنیک‌های تصمیم‌گیری چندشاخصه. تهران: انتشارات دانشگاه تهران.
  2. سازمان فناوری اطلاعات و ارتباطات شهرداری تهران (1398). آمارنامه شهرداری تهران 1397 (سالنامه آماری شهرداری تهران). تهران: انتشارات شهرداری تهران.
  3. حسینی، س. ه.، و صدیقی، ا. (1393). تحلیلی بر آمایش فضایی-مکانی فضاهای درمانی مشهد با رویکرد پدافند غیرعامل. مجله علمی آمایش سرزمین، (12)، 361-335.
  4. درگاهی، ح. (1390). استانداردهای بیمارستان. تهران: انتشارات دانشگاه تهران.
  5. زندی، ا.، پهلوانی، پ.، و بیگدلی، ب. (1399). تلفیق روش وزن‌دهی عینی کریتیک با روش کوداس و ویکور به‌منظور انتخاب مکان‌های مستعد احداث بیمارستان (مطالعه موردی: منطقه 5 تهران). جغرافیا و توسعه فضای شهری، (14)، 63-41.
  6. زندی، ا.، و پهلوانی، پ. (1400). مدل‌سازی مکانی و اولویت‌بندی مناطق مستعد جهت احداث بیمارستان با استفاده از تحلیل-های تصمیم‌گیری چند معیاره مبتنی بر سیستم اطلاعات مکانی (مطالعۀ موردی: منطقۀ 5 تهران). مجله علمی آمایش سرزمین، (25)، 280-247.
  7. زندی، ا.، پهلوانی، پ.، و بیگدلی، ب. (1401). رتبه‏ بندی بهینة سایت‏های کاندید بیمارستان با استفاده از تلفیق روش‏های وزن‌دهی عینی و تصمیم‏گیری چندمعیاره مبتنی بر سیستم اطلاعات جغرافیایی. مجله علمی آمایش سرزمین، (27)، 369-347.
  8. کاوه، م.، و مسگری، م. س. (1398). مکان‌یابی مراکز بیمارستان با استفاده از الگوریتم بهینه سازی ازدحام ذرات ترکیبی مطالعه موردی: منطقه دو تهران. فصلنامه علمی-پژوهشی اطلاعات جغرافیایی (سپهر)، (111)، 22-7.
  9. مصدق­راد، ع. م.، دهنوی، ح.، و دررودی، ع. (1400). عدالت در توزیع تختهای بیمارستانی شهر تهران: گزارش کوتاه. مجله دانشکده پزشکی دانشگاه علوم پزشکی تهران، (79)، 162-156.
  10. Adalı, E. A., & Tuş, A. (2021). Hospital site selection with distance-based multi-criteria decision-making methods. International Journal of Healthcare Management, 14(2), 534-544.
  11. Adam, S. P., Alexandropoulos, S. A. N., Pardalos, P. M., & Vrahatis, M. N. (2019). No free lunch theorem: A review. Approximation and Optimization: Algorithms, Complexity and Applications, 57-82.
  12. Almansi, K. Y., Shariff, A. R. M., Abdullah, A. F., & Syed Ismail, S. N. (2021). Hospital site suitability assessment using three machine learning approaches: evidence from the Gaza strip in Palestine. Applied Sciences, 11(22), 11054.
  13. Aturinde, A., Farnaghi, M., Pilesjö, P., Sundquist, K., & Mansourian, A. (2021). Spatial analysis of ambient air pollution and cardiovascular disease (CVD) hospitalization across Sweden. GeoHealth, 5(5), e2020GH000323.
  14. Bai, L. I., Shin, S., Burnett, R. T., Kwong, J. C., Hystad, P., van Donkelaar, A., & Chen, H. (2019). Exposure to ambient air pollution and the incidence of congestive heart failure and acute myocardial infarction: A population-based study of 5.1 million Canadian adults living in Ontario. Environment international, 132, 105004, 1-11.
  15. Bid, S., & Siddique, G. (2019). Human risk assessment of Panchet dam in India using TOPSIS and WASPAS multi-criteria decision-making (MCDM) methods. Heliyon, 5(6), e01956.
  16. Boyacı, A. Ç., & Şişman, A. (2022). Pandemic hospital site selection: a GIS-based MCDM approach employing Pythagorean fuzzy sets. Environmental Science and Pollution Research, 29(2), 1985-1997.
  17. Chatterjee, D., & Mukherjee, B. (2013). Potential hospital location selection using fuzzy-AHP: an empirical study in Rural India. International Journal of Innovative Technology and Research, 1(4), 304-314.
  18. Cox Jr, L. A. T. (2017). Socioeconomic and air pollution correlates of adult asthma, heart attack, and stroke risks in the United States, 2010–2013. Environmental Research, 155, 92-107.
  19. Dell’Ovo, M., Capolongo, S., & Oppio, A. (2018). Combining spatial analysis with MCDA for the siting of healthcare facilities. Land Use Policy, 76, 634-644.
  20. Hashemkhani Zolfani, S., Yazdani, M., Ebadi Torkayesh, A., & Derakhti, A. (2020). Application of a gray-based decision support framework for location selection of a temporary hospital during COVID-19 pandemic. Symmetry, 12(6), 886, 1-15.
  21. Hwang, C. L., & Yoon, K. (1981). Multiple attribute decision making: a state of the art survey. Lecture notes in economics and mathematical systems, 186(1).
  22. Kaveh, M., Kaveh, M., Mesgari, M. S., & Paland, R. S. (2020). Multiple criteria decision-making for hospital location-allocation based on improved genetic algorithm. Applied Geomatics, 12(3), 291-306.
  23. Kumar, P., Singh, R. K., & Sinha, P. (2016). Optimal site selection for a hospital using a fuzzy extended ELECTRE approach. Journal of Management Analytics, 3(2), 115-135.
  24. Lin, C.-T., Wu, C.-R., & Chen, H.-C. (2006). Selecting the Location of Hospitals in Taiwan to Ensure a Competitive Advantage via GRA. Journal of Grey System, 18 (3).
  25. Lin, C.-T., & Tsai, M.-C. (2010). Location choice for direct foreign investment in new hospitals in China by using ANP and TOPSIS. Quality and Quantity, 44(2), 375–390.
  26. Liu, L., Zhang, Y., Yang, Z., Luo, S., & Zhang, Y. (2021). Long-term exposure to fine particulate constituents and cardiovascular diseases in Chinese adults. Journal of Hazardous Materials, 416, 126051.
  27. Miç, P., & Antmen, Z. F. (2021). A decision-making model based on TOPSIS, WASPAS, and MULTIMOORA methods for university location selection problem. SAGE Open, 11(3), 21582440211040115.
  28. Moradian, M. J., Ardalan, A., Nejati, A., Boloorani, A. D., Akbarisari, A., & Rastegarfar, B. (2017). Risk criteria in hospital site selection: a systematic review. PLoS currents, 9.
  29. Munier, N. (2011). A strategy for using multicriteria analysis in decision-making: a guide for simple and complex environmental projects. Springer Science & Business Media.
  30. Nsaif, Q. A., Khaleel, S. M., & Khateeb, A. H. (2020). Integration of GIS and remote sensing technique for hospital site selection in Baquba district. Journal of Engineering Science and Technology, 15(3), 1492-1505.
  31. Opricovic, S., & Tzeng, G. H. (2004). Compromise solution by MCDM methods: A comparative analysis of VIKOR and TOPSIS. European journal of operational research, 156(2), 445-455.
  32. Rezaei, J. (2015). Best-worst multi-criteria decision-making method. Omega, 53, 49–57.
  33. Rezayee, M. (2020). Hospital site selection in Iskandar Malaysia using GIS-multi criteria analysis. International Journal of Basic Sciences and Applied Computing, 2(10), 8-15.
  34. Sadeghi, M., Ahmadi, A., Baradaran, A., Masoudipoor, N., & Frouzandeh, S. (2015). Modeling of the relationship between the environmental air pollution, clinical risk factors, and hospital mortality due to myocardial infarction in Isfahan, Iran. Journal of research in medical sciences: the official journal of Isfahan University of Medical Sciences, 20(8), 757-762.
  35. Sadjadi, S., & Karimi, M. (2018). Best-worst multi-criteria decision-making method: A robust approach. Decision Science Letters, 7(4), 323-340.
  36. Şahin, T., Ocak, S., & Top, M. (2019). Analytic hierarchy process for hospital site selection. Health Policy and Technology, 8(1), 42-50.
  37. Senvar, O., Otay, I., & Bolturk, E. (2016). Hospital site selection via hesitant fuzzy TOPSIS. IFAC-PapersOnLine, 49(12), 1140-1145.
  38. Sharmin, N., & Neema, M. (2013). A GIS-based multi-criteria analysis to site appropriate locations of hospitals in Dhaka City. Hospital, 8, 0-37.
  39. Soltani, A., Inaloo, R. B., Rezaei, M., Shaer, F., & Riyabi, M. A. (2019). Spatial analysis and urban land use planning emphasising hospital site selection: a case study of Isfahan city. Bulletin of Geography. Socio-economic Series, 43, 71-89.
  40. Taleai, M., Sharifi, A., Sliuzas, R., & Mesgari, M. (2007). Evaluating the compatibility of multi-functional and intensive urban land uses. International Journal of Applied Earth Observation and Geoinformation, 9(4), 375-391.
  41. Vahidnia, M. H., Alesheikh, A. A., & Alimohammadi, A. (2009). Hospital site selection using fuzzy AHP and its derivatives. Journal of environmental management, 90(10), 3048-3056.
  42. Yap, J. Y. L., Ho, C. C., & Ting, C. Y. (2019). A systematic review of the applications of multi-criteria decision-making methods in site selection problems. Built environment project and asset management, 9(4), 548-563.
  43. Zandi, I., & Delevar, M. R. (2021). Integration of GIS, Shannon Entropy and Multi-Criteria Decision Making for Hospital Site Selection. Presented at the 29th Annual GIS Research UK Conference (GISRUK), Cardiff, Wales, UK (Online).
  44. Zandi, I., Pahlavani, P., & Bigdeli, B. (2022). Different Multi-Criteria Strategies in Hospital Location Ranking using Dempster–Shafer Decision-Level Fusion and Quantifier-guided OWA, A Case Study. Earth Observation and Geomatics Engineering, 6, 10-27.
  45. Zavadskas, E. K., Kalibatas, D., & Kalibatiene, D. (2016). A multi-attribute assessment using WASPAS for choosing an optimal indoor environment. Archives of Civil and Mechanical Engineering, 16(1), 76-85.
  46. Zavadskas, E. K., Turskis, Z., Antucheviciene, J., & Zakarevicius, A. (2012). Optimization of weighted aggregated sum product assessment. Elektronika Ir Elektrotechnika, 122(6), 3–6.

 

CAPTCHA Image