Document Type : scientific-research article

Authors

Urmia University

Abstract

Extended Abstract

Introduction

During the last two decades, macro climatic changes in Simineh region, reductions in celestial precipitation, abundance of evapotranspiration and transpiration caused by an increase in the average temperature, and the interference of human constructive factors such as damming, agricultural activities, and unplanned and unprocessed harvesting of surface water have resulted in an environmental hazard. Therefore, numerous and acute environmental and environmental hazards are among the urgent necessities of production in Simineh region. Therefore, it seems necessary to provide solutions and appropriate strategies to prevent the decline of underground aquifers in the region, reform the model, and provide proper water management. Thus, the present study aims to identify the causes of water crisis, the threats and challenges of water scarcity, water management strategies, and the strengths and weaknesses of agricultural water management in Simineh section. We also intend to examine the strategies for improving agricultural water management in Simineh.
In this research, first, the factors of water crisis are investigated. To our knowledge, there is no solution in water management for natural factors, and if there is, it cannot be solved at a regional level within a short time. Therefore, strategies are mainly provided in case of human factors. Then, the threats and opportunities of the water crisis in the region are evaluated. Finally, a water management system is developed and water strategies are presented.

Review of Literature

The concept of water resources management has long been discussed in the world but integrated studies of surface and groundwater resources usually began in the 1960s. Numerous studies have been conducted in the field of water management. Cherini (2007) believes that the problem of integrated water management is lack of coordination related to water bodies in Zimbabwe. Ortega et al. (2016) in their study "use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomato plants grown under different temperatures regimes" propound the use of the smart irrigation system as one of the most important scientific achievements for water management.

Method

The sample in this study includes the villages of Simineh region, agricultural experts of Jihad’s Agriculture Organization, Simineh Agricultural Jihad Department, and Agricultural Jihad Service Centers. This section has 80 villages, 77of which are inhabited.
The variables were extracted from the research and theoretical foundations of the study. These variables include water crisis, water resource management, water scarcity threats, water shortage opportunities, and water resource management strategies.
The data collection was carried out in two sections. In the first stage, we collected information on the theoretical foundations of the subject and research records using the documentation methodology, library studies, Internet databases, and interview methods. Next, the required data were gathered and the statistics from the members of technical and engineering companies and consulted services and experts in the relevant organizations of the study area were analyzed. The questionnaire was administered in the form of field studies

Results and Discussion

According to the results, among water crisis factors, inappropriate utilization of resources with an average of 4.33 was the most important factor. Among the threats, the desertification with an average of 4.4 was found to be the most important threat. Among the water crisis opportunities, it was found that the motivation to change the pattern of agricultural crops with an average of 4.35, and a coefficient of variation of 17.47 was the most important opportunity. In case of the components, the pattern of cultivating management with a mean of 4.53 was identified as the most important component. Finally, in the strategy section, the development of pressurized irrigation methods with an average impact of 4.46 was the most important strategy.

Conclusion

The results show that the cropping pattern with a mean of 5.53 and a coefficient of variation of 17.95 acts as an important factor in creating water crisis. Consequently, it is possible to emphasize the change in water management as a part of the misuse caused by the non-conformance of the product type to the capacity and the potential of the region, which is exacerbated through loss of water in the transmission path. Pressure irrigation is another important component of water management. The results show that this criterion with an average of 4.35 and a coefficient of variation of 16.34 is of great importance in solving the crisis and proper use of water. The above-mentioned factors indicate that water management in the region involves technical weaknesses in water utilization system. Producers' training (with a mean of 4.17 and with a coefficient of variation of 16.45), the assessment of agricultural consumption (with a mean of 4.17 and a coefficient of variation of 17.5), and the conservation and maintenance of water resources such as Qantas and springs (with a mean of 4.0 and a coefficient of variation of 19.37) are considered significant factors in water management. These issues in water management revealed that in addition to the weaknesses in the technical dimension in the area, there is a social weakness that needs to be solved. The socio-economic partnership along with capacity building can provide useful specific strategies in this respect.

Keywords

1. حافظ نیا، م. (1389)، مقدمه ای بر روش تحقیق در علوم انسانی. تهران: انتشارات سمت.
2. حجی پور، م؛ ذاکری نیا، م؛ ضیائی, ع. ن و حسام، م. (2015). مدیریت تقاضای آب در بخش کشاورزی و تأثیر آن بر منابع آب دشت بجنورد به کمک اتصال مدل‌های MODFLOWو WEAP. پژوهش‌های حفاظت آب و خاک. شماره 4، جلد 22.‎ 101-85.
3. حسین زاده، ج؛ کاظمیه، ف؛ جوادی، ا و غفوری، ه. (1392). زمینه‌ها و سازوکارهای مدیریت آب کشاورزی در دشت تبریز. فصل‌نامة دانش آب و خاک. دورة 23، شمارة 2، 98-85.
4. رضایی‌زمان، م؛ مرید، س؛ دلاور، م. (1392). ارزیابی اثرات تغییر اقلیم بر متغیرهای هیدروکلیماتولوژی حوضة سیمینه رود. مجلة آب و خاک. شمارة (6). 1259-1247.‎
5. سامانی، م.‌ (1387). مدیریت منابع آب و توسعة پایدار. دفتر مطالعات زیربنایی، معاونت پژوهشی، مرکز پژوهش‌های مجلس شورای اسلامی‌.
6. سلیمی فرد، خ و مصطفایی دولت آباد، خ. (1352). بکارگیری برنامه‌ریزی آرمانی تصادفی در مدیریت منابع آب. نشریة آب و خاک، علوم و صنایع کشاورزی. جلد 27، شمارة 2، 282-251.
7. شهرکی، ج و محسنی، س. (1392) کاربرد تصمیمگیری چندمعیاره تعاملی در تخصیص بهینة منابع آب، مطالعة موردی: شهرستان یزد. فصل‌نامة علمی پژوهشی مهندسی آبیاری و آب. شمارة 12، سال سوم، 117-107.
8. کارآموز، م، رضاپور طبری، م؛ کراچیان، ر. (1383). بهره‌برداری تلفیقی از منابع آب سطحی و زیرزمینی در جنوب تهران: کاربرد مدل‌های الگوریتم ژنتیک و شبکة عصبی مصنوعی. اولین کنفرانس مدیریت منابع آب، انجمن علوم و مهندسی منابع آب ایران. دانشگاه تهران، صص31-21.
9. محمودی، ل. (1393). بررسی و مطالعة هیدرو اقلیم حوضة آبریز سیمینه‌رود با تأکید بر سیل خیزی. پایان‌نامة کارشناسی ارشد مخاطرات طبیعی. دانشگاه سیستان و بلوچستان. ایران.
10. مرتضی‌نژاد، م؛ یعقوبی، ج؛ ستوده نیا، ع و داغستانی، م. (1351). راهکارهای بهینه‌سازی مدیریت منابع آب در شبکة آبیاری از دیدگاه آببران، مطالعة موردی: شبکة آبیاری دشت قزوین. مجلة مهندسی منابع آب، (15)،77-69.
11. مهردادی ، ن؛ جعفری، ح؛ هدایتی، ا. (1394). آمایش سرزمین و مدیریت منابع آب؛ آمایش منابع به جای آمایش فعالیت‌ها. فصل‌نامةعلوم و تکنولوژی محیط زیست. شمارة 17، 86-66.
12. ناصری، م؛ نوذری، ح؛ مهدوی، ش. (1395). شبیه‌سازی رواناب دو حوضة سیمینه‌رود و زرینه رود با استفاده از نرم‌افزارHMS-HEC (مطالعة موردی: حوضة دریاچة ارومیه). ششمین همایش سراسری کشاورزی و منابع طبیعی پایدار. دی ماه 1395. مؤسسة آموزش عالی مهر اروند. تهران، صص 25-17.
13. هدایتی‌آقمشهدی، ا؛ جعفری، ح؛ مهردادی، ن؛ فهمی، ه؛ فرشچی، ه و زاهدی، س. (1394). آمایش سرزمین و مدیریت منابع آب، آمایش منابع به جای آمایش فعالیت‌ها (مطالعة موردی: حوضة آبخیز خزر). مجلة علوم و تکنولوژی محیط زیست، 17 (3)، 86-.66
14. Azaiez, M. N. (2002). A model for counjunctive use of ground and surface water with opportunity costs. European Journal of Operation Research, 143(3), 611-624.
15. Boakye, M. K., & Akpor, O. B.(2012). Community participation in water resources management in South Africa. International Journal of Environmental Science and Development, 3(6), 511-516.
16. Chereni, A. (2007). The problem of institutional fit in integrated water resources management: A case of Zimbabwe’s Mazowe catchment. Physics and Chemistry of the Earth, 32(15-18), 1246-1256.
17. Diaz, F.J., O’Geen, A.T., Dahlgren, R. A. (2012). Agricultural pollutant removal by con-structed wetlands: implications for water management and design. Agricultural Water Management, 104, 171-183.
18. He, L., Huang, G.H., Lu, H.W. (2008). A simulation-based fuzzy chance-constrained programming model for optimal groundwater remediation under uncertainty. Advances in Water Resources, 31(12), 1622-1635.
19. Labadie, J. W. (2004). Optimal operation of multi-reservoir system: State of the art review. Journal of Water Resources Planning and Management, 130(2), 93-111.
20. Lee, C. S., & Wen, C. G. (1996). Application of multiobjective programming to water quality management in a river basin. Journal of Environmental Management, 47, 11-26.
21. Ortega, W. M., Rodriguez, V., Martineza, R.M., Rivero, J. M., Camara-Zapatab, T., Mestre, F., & Garcia- Rodriguez-Ortega, W. M., Martinez, V., Rivero, R. M., Camara-Zapata, J. M., Mestre, T., & Garcia-Sanchez, F. (2017). Use of a smart irrigation system to study the effects of irrigation management on the agronomic and physiological responses of tomatoplants grown under different temperatures regimes. Agricultural Water Management, 183(31), 158-168.
22. Panigrahi, P., Srivastava, A. K., & Huchche, A. D. (2012). Effects of drip irrigation regimes and basin irrigation on Nagpur mandarin agronomical and physiological performance. Agricultural Water Management, 104, 79-88.
23. Ponce-Hernandez, R. (2002). Land degradation assessment in dry lands: Approach and development of a methodology framework. Rome: FAO.
24. Tan, Q., Huang, G., & Cai, Y. P. (2011). Radial interval chance-constrained programmingfor agricultural non-point source water pollution control under uncertainty. Agricultural Water Management, 98 (10), 1595-1606.
25. Van Veen, D. H., Kreutzwiser, R. D., & de Loë, R. C. (2003). Selecting appropriate dispute resolution techniques: A rural water managment example. Applied Geography, 23, 89-113.
26. Zhang, Y. M., Lu, H.W., Nie, X.H., Heb, L., & Du, P. (2014). An interactive inexact fuzzy bounded programming approach foragricultural water quality management. Agricultural Water Management 133, 104-111.
CAPTCHA Image