Document Type : *

Authors

1 Postdoctoral Researcher in Climatology, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

2 Professor in Climatology, Faculty of Social Sciences, University of Mohaghegh Ardabili, Ardabil, Iran

Abstract

The purpose of this research was investigating the heat waves of Ardabil city and their impacts on urban heating from 2003 to 2018. For this purpose, the maximum temperature data of Ardabil station was obtained from the Meteorological Organization, and then, by applying Fumiaki index to the maximum temperature data in MATLAB software, days with a temperature higher than NTD mean that lasted for at least 2 days were defined as a heat wave day. In order to investigate the impact of heat waves on heat island in the hot and cold months, the heat island for days with heat wave and a normal day without heat wave with the lowest maximum temperature before the occurrence of each heat wave was calculated during the day and at night of Modis-Aqua. The results showed that during the studied period, the highest annual and monthly frequency of heat wave in Ardabil was in 2010 and 2016 in March, April, and July. The results also showed that the maximum duration of heat waves was 4 days, i.e., short-term. In both hot and in cold months, in heat wave and no heat wave conditions, a cold island had been often formed during the day and a heat island is at night in Ardabil downtown. Heat waves, especially in hot months of year, had been more than no heat wave conditions. In heat wave conditions in summer nights, the temperature increase in the thermal island has been up to 4℃. The results showed that the influence of the heat island on the occurrence of heat waves was higher in hot months than cold months.
 
 

Keywords

Main Subjects

  1. اسمعیل­ نژاد، م.، خسروی، م.، علیجانی، ب، مسعودیان.، و س. ا (1392). شناسایی امواج گرمایی ایران. جغرافیا و توسعه، 11(33)، 54 –
  2. خورشید دوست، ع م.، زنگنه­ی شهرکی، س.، زارعی، ی.، محمودی، س. (1396). تحلیل همدیدی مخاطره امواج گرما در شمال غرب ایران. فصلنامه­ جغرافیای طبیعی، 14 -1.
  3. شجاعی زاده، ک.، خالدی، ش.، و اکبری ایرانی، ط (1400). واکاوی ارتباط امواج گرمایی با جزایر حرارتی شهر (مطالعه موردی: شهرستان آبادان). فصلنامه جغرافیا و مخاطرات محیطی، 10(4)، 207-193.
  4. عزیزی، قاسم. (1383). تغییر اقلیم. تهران: نشر قومس، چاپ اول.
  5. کاشکی، ع.، کرمی، م.، باعقیده، م.، و علیمرادی، م. ر. (1398). واکاوی آماری امواج گرمایی زابل. دگرگونی­ها و مخاطرات آب و هوایی، 1(3)، 55-40.
  6. کرم­پور، م.، رفیعی، ج.، جعفری، ا. (1396). شناسایی و تحلیل سینوپتیکی امواج گرمایی غرب ایران (ایلام، خوزستان، لرستان، کرمانشاه). مدیریت مخاطرات محیطی (دانش مخاطرات سابق)، 279-263.
  7. مجرد، ف.، معصوم­پور، ج.، رستمی، ط. (1394). تحلیل آماری - همدیدی امواج گرمایی بالای 40 درجه سلسیوس در غرب ایران. جغرافیا و مخاطرات طبیعی، 14-1.
  8. مجرد، ف.، ناصریه، م.، و هاشمی، س (1397). بررسی تغییرات دوره­ای و فصلی جزیره­ گرمایی شهر کرمانشاه در شب و روز با استفاده از تصاویر ماهواره‌ای. فیزیک زمین و فضا، 44(2)، 494 -479.
  9. مسعودیان، س.ا.، و ترکی، م. (1398). واکاوی تغییرات زمانی و مکانی جزیره گرمایی کلانشهر اهواز با کمک از داده­های مودیس. جغرافیا و برنامه ریزی محیطی، 1، 92-75.
  10. مسعودیان، س ا.، م. دارند،1390. تحلیل همدید سرماهای فرین ایران. جغرافیا و توسعه، 22، 185-165.
  11. منصوری، ا.، ب. امین نژاد و ح. احمدی، 1397. بررسی اثر تغییر اقلیم بر رواناب ورودی به مخزن سد کارون براساس گزارشات چهارم و پنجم IPCC. نشریه علوم آب و خاک (علوم و فنون کشاورزی و منابع طبیعی). 22(2)، 359-345.
  12. مولودی، گ.، خورانی، ا.، م.، عباس. (1394). اثر تغییر اقلیم بر امواج گرمایی سواحل شمالی خلیج‌فارس. نشریه تحلیل فضایی مخاطرات محیطی، 3(1)، 14 -1.
  13. هوشیار، م.، ب. سبحانی، و س ا. حسینی، 1397. چشم انداز ‌تغییرات ‌دماهای ‌حداکثر ‌ارومیه با ‌استفاده ‌از ‌‌ریزگردانی‌ آماری خروجی‌ مدل‌‌ CanESM2 . نشریه علمی- پژوهشی جغرافیا و برنامه ریزی، 22(63)، 325-305.

                                                                                     

  1. Ahmadnezhad, E., Holakouie, K.,Ardalan, A.,Mahmoudi, M. Younesian, Nddafi, K.andMesdaghinia, A., 2013. Excess Mortality during Heat Waves,Tehran, Iran:An Ecological Time-Series Study. Journal Punlmed, 13(1), 24-31.
  2. Añel, J., Fernández-González, M., Labandeira, X., López-Otero, X., & de la Torre. L. (2017). Impact of Cold Waves and Heat Waves on the Energy Production Sector. Atmosphere, 10, 1-13.
  3. Almusaed, A. (2011). The Urban Heat Island Phenomenon upon Urban Components. Biophilic and Bioclimatic Architecture, 21, 139-150.
  4. Bai, L., Gangqiang, D., Shaohua, G., Peng, B., Buda, S., Dahe, Q., Ramamurthy, P., & Bou‐Zeid, E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of geophysical research Atomospheres an AGU JOURNAL, 122,168-178.
  5. Basara, J., Basara, H., Bradley, I., & Kenneth, C. (2018). The Impact of the Urban Heat Island during an Intense Heat Wave in Oklahoma City. Advances in Meteorology, 7, 1-10.
  6. De Ridder, K., Maiheu, B., Lauwaet, D., Daglis, I A., Keramitsoglou, I., Kourtidis, K., Manunta, P., & - Paganini, M. (2016). Urban Heat Island Intensification during Hot Spells-The Case of Paris during the summer of 2003. Urbanscience, 1, 1-11.
  7. Dobrovolny, P., & Krahula, L. (2015). The spatial variability of air temperature and nocturnal urban heat island intensity in the city of Brno, Czech Republic, Moravian Geographical Reports, 23, 8-16.
  8. Feng, C., Xuchao, Y., & Weiping Z. (2014). WRF simulations of urban heat island under hot-weather synoptic conditions: The case study of Hangzhou City, China. Atmospheric Research, 138, 364–377.
  9. Feron- Sarah, R., Cordero, R., Alessdro- Damiani, P., Llanillo, J., Jorquera, J., Sepulveda, E., Asencio, V., Laroze, D., Labbe, F., Carrasco, J., & torres, G. (2019). Observations and projections of Heat Waves in south Americas. Scientific Reportst, 9, 1-15.
  10. Founda, D., & Santamouris, M. (2017). Synergies between Urban Heat Island and Heat Waves in Athens (Greece), during an extremely hot summer (2012), Scientific Reports, 7, 1-16.
  11. Fujibe, F., Yamazaki, N., Kobayashi, K., & Nakamigawa, H. (2007). Long-term changes of temperature extremes and day-to-day variability in Japan, papers in Meterology and Geophysics, IPCC, 85, 63-70.
  12. Ghobadi, A., Khosravi, M., & Tavousi T. (2017). Surveying of Heat waves Impact on the Urban Heat Islands: Case study, the Karaj City in Iran. Urban Climate, 10, 1-16.
  13. Hosseini, A. (2016). Assessment of Urban Heat Island based on the relationship between land surface temperature and Land Use/Land Cover in Tehran, Sustainable Cities and Society, 23, 94-104.
  14. Keggenhoff, I., Elizbarashvili, M., & King, L. (2015), Heat Wave Events over Georgia since 1961: Climatology, Changes and Severity, Climate, 3(2), 308-328
  15. Khandelwal, S., Goyal, R., Kaul, N., & Mathew, A. (2017). Assessment of land surface temperature variation due to change in elevation of area surrounding Jaipur, India. The Egyptian Journal of Remote Sensing and Space Science, 21, 1-8.
  16. Kim YH, Baik JJ. 2005. Spatial and temporal structure of the urban heat island in Seoul. Journal of Applied Meteorology, 44, 591-605.
  17. Landsberg, H. E. 1981. The urban climate. USA: International Geophysics Series v: 28.
  18. Lazzarini, M., Marpu, PR., & Ghedira, H. (2013). Temperature-land cover interactions: the inversion of urban heat island phenomenon in desert city areas. Remote Sensing of Environment, 130, 136-152.
  19. Lemonsu, A., Viguié, V., Daniel, M., Masson, V. (2015). Vulnerability to heat waves: Impact of urban expansion scenarios on urban heat island and heat stress in Paris (France). Urban Climate, 14, 586–605.
  20. Paravantis, J., Santamouris, M., Constantinos, C., Efthymiou, C., & Kontoulis N. (2017). Mortality Associated with High Ambient Temperatures Heatwaves, and the Urban Heat Island in Athens, Greece, Sustainability, 606, 2-22.
  21. Ramamurthy, P., & Bou‐Zeid, E. (2017). Heatwaves and urban heat islands: A comparative analysis of multiple cities. Journal of Geophysical Research: Atmospheres, 1, 168-178.
  22. Rohini, P., Pajeevan, m., & Mukhopahay, P. (2019). Future projections of heat waves over India from CMIP5 models, Climate Dynamics, (53), 975–988.
  23. Weihe, Z., Shuang, Ji., Tsun-Hsuan, Ch., Hou, Y., & Zhang, K. (2014). The 2011 heat wave in Greater Houston: Effects of land use on temperature. Environmental Research, 135, 81–87.
  24. Weng, Q., Rajasekar, U., & Hu, X. (2011). Modeling urban heat islands and their relationship with impervious surface and vegetation abundance by using ASTER images.Geoscience and Remote Sensing, 49(10),4080-4089.
  25. Wilks, D.S. (2006). Statistical Methods in the Atmospheric Sciences, Second Edition, Academic Press is an imprint of Elsevier, Cornell University, USA 648.
  26. Zhou, B., Lauwaet, D., Hooyberghs, H., Ridder, D., Kropp, K., & D- Rybski, J. (2016). Assessing Seasonality in the Surface Urban Heat Island of London, Journal of Applied Meteorology and Climatology, 55, 493-505.
CAPTCHA Image