Document Type : *

Authors

1 PhD in Climatology, Department of Physical Geography, Faculty of Geographical Sciences and Planning, Isfahan University, Isfahan, Iran

2 Associate Professor in Climatology, Department of Physical Geography, Faculty of Geographical Sciences and Planning, Isfahan University, Isfahan, Iran

Abstract

Some indicators of the climatic vulnerability of water resources are water stress, dry wetlands and lakes, decrease of river flow, mitigation of aquifers’ level of water, and imitated water supply for drinking and agriculture. The North Karun water basin plays a significant role in sustainable supply of water resources in the southwest and the central plateau of Iran. The drought of the basin has decreased by 50% supplying the water and the level of aquifers. The rate of change of basin discharge is 63%, indicating the high vulnerability of water resources. The analysis of climate vulnerability index (1990-2020) showed that the most significant elements constitute flow variability index (W=1.987), drought frequency (W=1.658), agricultural water (W=1.332), and aquifer reservoir deficit (W=1.09). The sub-basins Beheshtabad, Vanak, and Lordegan showed high vulnerability index and Bazoft and Kouhrang showed the lowest vulnerability. For future studying of the basin, the climatic condition of 2020-24 were used considering the climatic changes of SSP2-4.5 and SSP5-8.5 scenarios, the sixth climate change report, and negative and positive drivers of the basin's development plans. Implementing negative propellants will increase the vulnerability index, and implementing strategies based on positive drivers (adapting to climate change, modifying consumption pattern, and adjusting transferable water (from 770 to 212)) will decrease climate vulnerability index in 2020-2040 vision. If the current situation continues, the vulnerability index, the social tensions, and climatic migrations will increase. Modifying usage strategies, adjusting development plans, selecting the climate change adaptation strategies, and modifying water consumption pattern based on ecological potential will increase the resilience and sustainability of water resources.
 

Keywords

Main Subjects

  1. انصاری، ث.، و دهبان، ح. (1401). بررسی روند تغییرات دما و بارش حوزه‌های آبریز ایران در افق 20 سال آینده براساس برونداد مدل‌های CMIP6. مجله پژوهش آب ایران، 16(1)، 11-24.
  2. انصاری، ث.، و مساح بوانی، ع. ر. (1397). ارزیابی راهکارهای سازگاری با تغییر اقلیم براساس نشانگرهای اجتماعی، اقتصادی، زیست‌محیطی و امنیت آبی. تحقیقات منابع آب ایران، 14(5)، 237-253.
  3. سازمان مدیریت و برنامه‌ریزی چهار محال و بختیاری. ( 1400). سند ملی آمایش استانی. 172-195.
  4. صالح، ا.، و صالح‌نیا، ن. (1401). بررسی نقش تنوع معیشتی در تاب‌آوری و سطح رفاه جامعه روستایی در مواجهه با تغییر اقلیم. مجله آب و توسعه پایدار، 9(1)، 75-84.
  5. فرمانبر، ز.، و دلاور، م. (1396). بررسی اثرات تغییر اقلیم بر سیستم‌های منابع آب و کشاورزی در چارچوب ارزیابی منطقه‌ای. تحقیقات منابع آب ایران، 13(4)، 75-88.
  6. محمدی، پ.، ملکیان، ا.، قربانی، م.، و نظری سامانی، ع. ا. (1398). بررسی ارتباط بین وضعیت آسیب‌پذیری جوامع و تغییرات آب و هوایی در استان کرمانشاه. جغرافیا و پایداری محیط (پژوهشنامه جغرافیایی)، 9(32)، 47-33.
  7. وحدانی، اقبال، محمدی، حسین، و اسدیان، فریده. (1399). پهنه بندی شاخص آسیب‌پذیری ساختاری ناشی از تغییر اقلیم (مطالعه موردی استان کردستان). علوم و تکنولوژی محیط‌زیست، 22(1)، 38-48.
  8. Berrang-Ford, L., Siders, A. R., Lesnikowski, A., Fischer, A. P., Callaghan, M. W., Haddaway, N. R., ... & Abu, T. Z. (2021). A systematic global stocktake of evidence on human adaptation to climate change. Nature Climate Change11(11), 989-1000.
  9. Bijl, D. L., Beimans, H., Bogaart, P. W., Dekker S. C., Doelman, J. C., Stehfest, E., & van Vuuren, D. P. (2018). A global analysis of future water deficit based on different allocation mechanisms. Water Resources Research, 54(8), 5803–5824.
  10. Burek, P., Satoh, Y., Kahil, T., Tang, T., Greve, P., Smilovic, M., ..., & Wada, Y. (2020). Development of the Community Water Model (CWatM v1. 04)–a high-resolution hydrological model for global and regional assessment of integrated water resources management. Geoscientific Model Development13(7), 3267-3298
  11. Burke, E. , Zhang, Y., & and Krinner, G. (2020). Evaluating permafrost physics in the Coupled Model Intercomparison Project 6 (CMIP6) models and their sensitivity to climate change. Cryosphere, 14(9), 3155–3174.
  12. Das, S., & Banerjee, S. (2021). Investigation of changes in seasonal streamflow and sediment load in the Subarnarekha-Burhabalang basins using Mann-Kendall and Pettitt tests. Arabian Journal of Geosciences14(11), 1-14.
  13. Douville H., Arias, P., Bellouin, N., Coppola, E., & Jones, R. G. (2021). Climate change 2021: The physical science basis. Contribution of working group14 I to the sixth assessment report of the intergovernmental panel on climate change; technical summary. Cambridge, United Kingdom and New York: Cambridge University Press.
  14. Douville, H., Raghavan, K., Renwick, J., Allan, R. P., Arias, P. A., Barlow, M.,..., & Zolina, O. (2021). Water cycle changes. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.
  15. Flörke, M., Schneider, C., & McDonald, R. I. (2018). Water competition between cities and agriculture driven by climate change and urban growth. Nature Sustainability, 1(1), 51–58.
  16. Gadedjisso-Tossou, A., Adjegan, K. I., & Kablan, A. K. M. (2021). Rainfall and temperature trend analysis by Mann–Kendall test and significance for rainfed cereal yields in Northern Togo. Sci, 3(1), 17.
  17. Guillaumont, P., & Simonet, C. (2011). Designing an index of structural vulnerability to climate change. Ferdi Working Paper. 40-53. Retrieved from https://ferdi.fr/dl/df-wGxz7S3WC8RfZ82UJVCCwjzw/ferdi-b18-designing-an-index-of-physical-vulnerability-to-climate-change.pdf
  18. Hanasaki, N., S. Yoshikawa, Y. P., & Kanae, S. (2018). A global hydrological simulation to specify the sources of water used by humans. Hydrology and Earth System Sciences, 22(1), 789–817.
  19. Hanasaki, N., Yoshikawa, S., Pokhrel, Y., & Kanae, S. (2018). A quantitative investigation of the thresholds for two conventional water scarcity indicators using a state‐of‐the‐art global hydrological model with human activities. Water Resources Research54(10), 8279-8294.
  20. https://www.parsi.euronews.com/
  21. Koutroulis, A. G., Papadimitriou, L. V., Grillakis, M. G., Tsanis, I. K., Warren, R., & Betts, R. A. (2019). Global water availability under high-end climate change: a vulnerability based assessment. Global and Planetary Chang, 175, 52–63.
  22. Li, Y., Kong, M., Zang, C., & Deng, J. (2023). Spatial and temporal evolution and driving mechanisms of water conservation amount of major ecosystems in typical watersheds in subtropical China. Forests, 14(1), 2-18.
  23. Müller Schmied, H., Caceres, D., Eisner S., Florke M., Herbert, C., Neimann, Ch., & Doll, P. (2021). The global water resources and use model WaterGAP v2.2d: Model description and evaluation. Geoscientific Model Development, 14(2), 1037-1079.
  24. Müller, H., Schmied, Y., Felfelani, F., Satoh, Y., Boulange, J., Burek, P., …, & Wada, Y. (2021). Global terrestrial water storage and drought severity under climate change. Nature Climate Change11(3), 226-233.
  25. Qin, Y., Mueller, N. D., Siebert, S., Jackson, R. B., AghaKouchak, A., Zimmerman, J. B., & Davis, S. J. (2019). Flexibility and intensity of global water use. Nature Sustainability, 2(6), 515–523.
  26. Qin, Z., Fu, H., & Chen, X. (2019). A study on altered granite meso-damage mechanisms due to water invasion-water loss cycles. Environmental Earth Sciences78(14), 1-10
  27. Schilling, J., Hertig, E., Tramblay, Y., & Scheffran, J. (2020). Climate change vulnerability, water resources and social implications in North Africa. Regional Environmental Change, 20, 1-12
  28. Searchinger, T., Hanson, C., Ranganathan, J., Dumas, P., Matthews, E., & Klirs, C. (2019). Creating a sustainable food future: A menu of solutions to feed nearly 10 billion people by 2050. Word Resources.
  29. Seneviratne, S. I., Zhang, X., Adnan, M., Badi, W., Dereczynski, C., Di Luca, A…, & Zhou, B. (2021). Weather and climate extreme events in a changing climate. In Climate change 2021: The physical science basis. Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.
  30. Sullivan, C., & Byambaa. E. (2013). The Climate Vulnerability Index (CVI) and an illustration of its application to Mongolia. UNECE Climate Adaptation Workshop, Geneva.
  31. The Intergovernmental Panel on Climate Change (IPCC). (2018). Special Report Global Warming of 1.5°C. October 2018. Cambridge, United Kingdom and New York: Cambridge University Press.
  32. The Intergovernmental Panel on Climate Change (IPCC). (2022). Working Group Report AR6 Climate Change 2022: Impacts, adaptation and vulnerability. Retrieved from https://www.ipcc.ch/assessment-report/ar6/
  33. The Intergovernmental Panel on Climate Change IPCC. (2021). Climate change 2021: The physical science basis. In Contribution of working group I to the sixth assessment report of the intergovernmental panel on climate change. Cambridge, United Kingdom and New York: Cambridge University Press.
CAPTCHA Image